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ABSTRACT

Botnets have become platforms to launch distributed denial-
of-service attacks and coordinate massive e-mail spam cam-
paigns, to name just a few of botnet-related nefarious activi-
ties. Apart from the wired networks, the increasingly Internet-
enabled cellular wireless networks are also vulnerable to bot-
net attacks; a situation which motivates a thorough study of
botnet expansion and the mathematical models thereof. In
this paper, we propose the following two Continuous-Time
Markov Chain-based models for prediction of the botnet size
in the initial phase of botnet lifecycle: SComF for the case
of finite number of susceptible nodes (suitable for a botnet
expanding in a closed environment such as an administrative
domain, or a LAN) and SComI for the case of infinite num-
ber of susceptible nodes (suitable for a botnet expanding in
the larger Internet). Having access to such models would en-
able security experts to have reliable size estimates and there-
fore be able to defend against an emerging botnet with ade-
quate resources. We derive the probability distributions for
both models and provide some numerical results as well as a
simulation study accompanying the numerical analysis of the
SComF model using the GTNetS network simulator.

Index Terms— Analytical models, Computer security,
Epidemic models, Malware propagation, Botnets.

1. INTRODUCTION

Botnets, which are overlay networks of compromised com-
puters built by cybercriminals known as botmasters, are press-
ing security concerns in the Internet world. As the size of
some of the recent botnets has reached millions [1, 2], their
firepower has become a major security threat. An important
aspect of botnets that needs to be understood and predicted is
their size; the bigger the size, the higher the threat level.

We present two Continuous-Time Markov Chain (CTMC)
models of botnet expansion. CTMC models take into account
stochastic population size changes and the appropriateness
of their use has been confirmed [3] for malware propagation
which happens under the influence of the same physical pro-
cesses affecting botnets. Each dimension in the CTMC mod-

els represents a node stage, with the considered stages being
Susceptible (i.e., susceptible to be compromised) and Com-
promised (i.e, Infected and Connected to the botnet). As bot-
masters use a plethora of methods to infect the nodes, it is rea-
sonable to assume that a node is never in Immune/Removed
stage. Further, we do not track the number of Infected-only
nodes; these nodes are not important threats as long as they
are not Connected to the botnet. Limiting the number of
stages allows the development of tractable CTMC models.

We first model the unhindered growth of botnet when the
population size is infinite. An infinite population size is a real-
istic assumption considering the total number of devices that
are connected to the Internet today. As we consider Susceptible
and Compromised stages and the population size to be Infinite,
we name the model SComI. Next, we model the unhindered
growth of botnet when the population size is finite. The as-
sumption of finite population size makes the model more suit-
able in case a segment of Internet or a local/wide area network
is the environment in which the botnet can expand. As we
consider Susceptible and Compromised stages and the popu-
lation size to be Finite, we name the model SComF.

1.1. Related Work

Due to having similar problem structures, researchers have
approached botnet population size modeling by adapting ana-
lytical results from the domain of malware propagation [4, 5]
which in turn has borrowed from mathematical epidemiol-
ogy [6]. There have been several deterministic models for
botnet population size modeling [7–9], however, these models
are inherently unable to capture the stochastic nature of pop-
ulation size changes. On the other hand, there have been few
efforts recently to tackle the problem using stochastic math-
ematical methods: [10] modeled a botnet using a Stochastic
Activity Network in an analytical simulator and [11] used
stochastic Monte Carlo simulation to model a Peer-to-Peer
botnet. Both of these studies are limited due to the used sim-
ulation environment which in general limits easy replication
of the results and further analysis by others. Finally, [12] de-
rived a probability model for a botnet, however, it equated
botnet expansion with worm spread.
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Fig. 1: SComI botnet model: 1-dimensional CTMC

1.2. Paper Contribution and Organization

The contribution of this paper is twofold: (1) two analytical
stochastic botnet models, SComI and SComF, that cover both
cases of infinite and finite node population sizes ; and (2) the
method of examination of the interaction between the botnet
expansion and the worm spread using Georgia Tech Network
Simulator (GTNetS).

The paper is organized as follows: Sections 2 and 3 present
the model, the probability distribution derivation, and some
numerical results regarding the SComI model and the SComF
model, respectively. We present the simulation study in Sec-
tion 4 and conclude the paper in Section 5. Some of the in-
termediary steps in the derivations of this paper are provided
in [13] due to space constraints.

2. SCOMI: UNHINDERED BOTNET EXPANSION
MODEL - INFINITE POPULATION SIZE

In this section, we model unhindered growth of the botnet and
define the state of the system to be the number of nodes that
are in the botnet (nodes in Compromised stage). Our devel-
opment leads to a solution for the time-dependent probability
distribution of the number of nodes in the botnet.

2.1. State-transition-rate Diagram

The state-transition-rate diagram for the SComI model is de-
picted in Fig. 1. As initial condition, we assume that the size
of the botnet is one. In this model, we consider that each node
in the botnet recruits one node (grows the size of the botnet
by one) with probability λ∆t+ o(∆t) in any ∆t interval.

2.2. Probability Distribution Derivation

2.2.1. Differential-Difference Equations

For this pure-birth process, the rate of change of probability
at any state is determined by setting it equal to the difference
of probability flows into and out of that state as follows:

dPn(t)

dt
= (n− 1)λPn−1(t)− nλPn(t) n ≥ 1 (1)

The initial condition is P1(0) = 1.

2.2.2. Probability Generating Function

To determine Pn(t), the probability distribution, we first de-
rive the Probability Generating Function (PGF). For that, we
need to start from the aforementioned differential-difference

0 2 4 6 8 10 12
0

5

10

15

20

Time HhoursL

E
t@

n
D

0 2 4 6 8 10 12
0

5

10

15

20

Time HhoursL

Σ
2

t
@n
D

Λ=1.5

Λ=1

Λ=0.5

Fig. 2: SComI model: Mean and variance of botnet size

equation. The relationship between P (z, t), the PGF, and
Pn(t), the probability distribution, is as follows: P (z, t) =∑∞
n=0 Pn(t)zn. We therefore have ∂P (z,t)

∂t =
∑∞
n=0

dPn(t)
dt zn

and can write the initial condition in terms of PGF asP (z, 0) =
z. We multiply (1) by zn and make a summation over the
range of values of n to yield (after simplification):

∂P (z, t)

∂t
+ λz(1− z)∂P (z, t)

∂z
= 0 (2)

We need to solve this first-order Partial Differential Equation
(PDE) in order to derive P (z, t). We use the Method of Char-
acteristics [14] to solve this PDE as follows: we define the
auxiliary variable swhich represents the scaled distance along
a characteristic curve. Based on Method of Characteristics, z,
t, and therefore P (z, t) are effectively all functions of s. We
therefore can write the following equations based on (2):

∂t
∂s = 1
∂z
∂s = λz(1− z)
dP (z,t)
ds = 0

(3)

With the initial condition P (z, 0) = z. From the previous
equations, we can derive the PGF as follows:

P (z, t) =
ze−λt

1− z + ze−λt
(4)

2.2.3. Probability Distribution

To get the probability distributionPn(t), we need to derive the
inverse PGF of (4). Using the transform properties Aαn ⇔
A

1−αz and fn−k ⇔ zkF (z) (for k > 0), we derive Pn(t), the
probability distribution of the number of nodes in the botnet
at time t, as follows:

Pn(t) = e−λt(1− e−λt)n−1 n ≥ 1 (5)

2.3. Numerical Analysis

We now present some numerical results, depicted in Figs. 2
and 3, to illustrate how the derived probability distribution
could be used in the study of any particular parameter of inter-
est in the process of botnet expansion. Time-dependent mean
and variance have been calculated and drawn, depicted in Fig.
2, which show how quickly botnet expansion can happen if
the botnet is able to expand throughout the Internet. In each
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Fig. 3: SComI model: Time-dependent probability of the number of Compromised nodes (botnet size) being one (right), ten
(center-right), twenty (center-left), or greater than twenty (left).
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Fig. 4: SComF botnet expansion model: 2-dimensional CTMC. In the middle, the expansion rate starts to decrease.

figure, we demonstrate the effect of varying values of λ (with
the unit of nodes/hour) which provides insight on how this
parameter affects the speed of botnet expansion. In the nu-
merical analysis of the SComF model (introduced in the next
section), we set the total number of nodes (N ) to 20 (N can be
set to any arbitrarily large value of interest as well). To have
a comparison between the two models, we draw the time-
dependent probabilities for several values of N , including the
time-dependent probability of number of Compromised nodes
being greater than 20 (left sub-figure of Fig. 3).

3. SCOMF: UNHINDERED BOTNET EXPANSION
MODEL - FINITE POPULATION SIZE

In this section, we model unhindered growth of the botnet
with the finite population size assumption. In this model,
there is a fixed number of nodes in Susceptible stage and these
nodes move to Compromised stage as time goes by. State of
the system is therefore defined to be the number of nodes in
the aforementioned stages. Our development leads to a so-
lution for the time-dependent probability distribution of the
number of nodes in the botnet (nodes in Compromised stage).

3.1. State-transition-rate Diagram

The state-transition-rate diagram for the SComF model is de-
picted in Fig. 4. As initial condition, we assume that the size
of the botnet is one and there are N − 1 nodes in Suscepti-
ble stage. A state in the 2-dimensional CTMC is denoted by
the duplet (n0, n1) (n0 is the number of nodes in Susceptible
stage and n1 is the number of nodes in Compromised stage, as
indicated in the diagram). One variable between n0 and n1,
however, is a dependent variable since n0+n1 = N . For sim-
plicity of notation, let us denote Pn0,n1(t) as Pn1(t) by drop-
ping n0 (i.e., considering n0 to be the dependent variable).
Finally, let us use n instead of n1, thus Pn1(t) is replaced
by Pn(t). Pn(t) is therefore the time-dependent probability
distribution of the number of nodes in the botnet.

In this model, we consider that each node in the botnet

recruits one node (grows the size of the botnet by one) with
probability λ∆t + o(∆t) in any ∆t interval. The expansion
rate continues to increase up to the point where half of the sus-
ceptible population has left this stage. At this point, there are
less nodes in Susceptible stage in the neighborhood of each
node of the botnet; this would lead to a decrease in the expan-
sion rate from that point on. The rate will continue to decrease
until all nodes are in Compromised stage.

3.2. Probability Distribution Derivation

3.2.1. Differential-Difference Equations

For this birth process, the equations for the rate of change of
probabilities are as follows:
dP1(t)
dt = −λP1(t) n = 1

dPn(t)
dt = (n−1)λPn−1(t)−nλPn(t) 2 ≤ n ≤ N

2
dPn(t)
dt = (N−n+1)λPn−1(t)−(N−n)λPn(t)

N
2 + 1 ≤ n ≤ N

(6)
Initial condition is P1(0) = 1. Without loss of generality, we
assume N to be even.

3.2.2. Laplace Transform of the Probability Distribution

From (6), lettingP ∗n(s) denote the Laplace transform ofPn(t),
we can derive the following expressions for P ∗n(s):

P ∗n(s) =


1

s+λ n = 1
(n−1)λ
s+nλ P

∗
n−1(s) 2 ≤ n ≤ N

2
(N−n+1)λ
s+(N−n)λP

∗
n−1(s) N

2 + 1 ≤ n ≤ N
(7)

Using the Induction method, we can recursively determine
P ∗n(s) from (7) as follows:

P ∗n(s) =


1

s+λ n = 1
(n−1)!λn−1∏n
k=1(s+kλ)

2 ≤ n ≤ N
2

N
2

!

(N−n)!
λ(n−N

2
)

∏n−N
2

k=1 (s+(N2 −k)λ)
P ∗N

2

(s) N
2 + 1 ≤ n ≤ N

(8)
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Fig. 5: SComF model: Time-dependent probabilities (right sub-figs.) and variance (left sub-fig.) of the botnet size

3.2.3. Probability Distribution

We use the Partial Fraction Expansion method on expressions
obtained for P ∗n(s) in (8) in order to perform the Laplace In-
version to derive Pn(t) (see [13] for a detailed derivation).
The probability distribution of the number of nodes in the
botnet (nodes that are in Compromised stage) at time t (i.e.,
Pn(t)) is therefore obtained as follows:

n=1: e−λt

2≤n≤N2 :
∑n−1
k=0 ((−1)k(n−1

k )e−(k+1)λt)
N
2 +1≤n<N :

∑N
2
k=1

k/∈[N−n,N
2
−1]

(
T1
T2
e−kλt

)

+
∑N

2
−1

k=1

k∈[N−n,N
2
−1]

T1
T2
te−kλt+

d(
T1
T3

)

ds

∣∣∣∣∣
s=−kλ

e−kλt


n=N :

T1
T2|k=0

+
∑N

2
−1

k=1

T1
T2
te−kλt+

d(
T1
T3

)

ds

∣∣∣∣∣
s=−kλ

e−kλt


+

T1
T2|k=N

2

e−
N
2
λt

(9)
where T1, T2, and T3 are given as follows:

T1 =
N
2 !

(N−n)!λ
(n−N2 )(N2 − 1)!λ

N
2 −1

T2 =
∏N

2
i=1
i 6=k

(i− k)λ
∏N

2 −1
j=N−n
j 6=k

(j − k)λ

T3 =
∏N

2
i=1
i 6=k

(s+ iλ)
∏N

2 −1
j=N−n
j 6=k

(s+ jλ)

3.3. Numerical Analysis

Comparable to the numerical analysis for the SComI model,
Fig. 5 depicts the three respective time-dependent probabili-
ties for the SComF model as well as the time-dependent vari-
ance (left sub-fig.). Fig. 6 depicts the time-dependent mean
number of nodes in Compromised stage (botnet size) for the
SComF model. Like before, the effect of varying values of λ
on the speed of botnet expansion can be observed in the fig-
ures. It is also interesting to observe the “saturation effect” as
the botnet expands to all nodes, depicted in Fig. 6.

4. SIMULATION STUDY

To our knowledge, there are neither publicly available mea-
surement data nor simulation models of initial botnet expan-

sion. As botnets are inherently designed to remain invisible, it
is extremely difficult, if not impossible, to be able to observe
and measure in real-time the expansion of a real-world bot-
net. In this section, we provide a brief simulation study which
is complementary to the presented numerical analysis. The
simulation study concerns the SComF model, as the SComI
model does not lend itself to comparison to a simulated net-
work with limited number of nodes.

We borrow the term “spearhead” and the notion of “two-
stage worm” used in [7] to describe our simulation study.
Spearhead is the initial infection (e.g., a worm) that spreads
in the network after which the infected nodes start to connect
to the botnet which is the process of botnet expansion. The
botnet expansion therefore happens with a delay compared to
the spread of the initial infection. In this simulation study, we
examine the spread of the initial infection (the worm spread)
and compare it to the determined analytical result for the bot-
net expansion.

The infection of nodes (e.g., worm spread) is independent
from the connection of infected nodes to the botnet. Specif-
ically, there is no relationship between the infection rate and
the connection rate (λ), i.e., the latter could be lower or higher
than the former. It is, however, interesting to observe how the
botnet could expand in relation to the spread of the worm, in
case these rates are equal.

The worm models developed in the GTNetS simulator
[15] seem to be the most well-developed publicly-available
simulation models for worm spread. With these models in-
corporated, the simulator models the activities of the worms
in packet-level detail. In this simulator, a UDP-based worm
can be configured using parameters such as worm “scan rate”,
whereas a TCP-based worm can be configured by setting the
number of simultaneous TCP connections that each infectious
node can create. We use a UDP-based worm in this simula-
tion in order to be able to have a comparison between λ of the
SComF model and the “scan rate” of the worm model1.

Comparable to the numerical results for the SComF model,
we simulated a 20-host topology and tracked the number of
infected hosts over time. The worm “scan rate” is the number
of infectious packets each infected host sends out each hour
(here, scan rate is set to one). The number of infected hosts
over time is depicted in Fig. 7, which is one typical result

1The simulation scenario is a slightly modified version of wormsim.cc in
GTNetS; see [13] for the code and for a screen shot of the simulated topology.
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Fig. 6: SComF model: Mean botnet size

from several runs of the simulation. The curve indicating the
number of infected hosts over time can be superimposed over
Fig. 6 which shows the botnet growth. We therefore can ob-
serve that the botnet growth (for λ = 1) correctly lags the
spread of infection (for scan rate = 1).

5. CONCLUDING REMARKS

Using the developed analytical models, the botnet size estima-
tion problem has reduced from having to estimate the global
size of the botnet to the estimation of the model’s parameter
(λ) which requires only local knowledge. In order to use the
models in the real world, one could consider the following
methods when trying to estimate a value for λ: (1) local mea-
surements through Honeynet log analysis [16], for example;
and (2) a statistical approach to botnet virulence estimation
which has recently been proposed [17]; this latter method im-
proves the reliability of the process of estimating λ.

The analytical models as well as the accompanying nu-
merical results provide some indication as to how a botnet
would expand in various scenarios. On the other hand, simu-
lation results concerning the SComF model shed light on the
interaction between the spread of the initial infection and the
subsequent botnet expansion. As both SComF and SComI
models account for the most important node stages (i.e., Sus-
ceptible and Compromised), they are useful and sufficient mod-
els in this particular application area, i.e., prediction and anal-
ysis of initial unhindered botnet expansion. The insight de-
rived from the use of these two models leads to security prac-
titioners being able to estimate the size of the botnet in order
to adequately deploy mitigation strategies.
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