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Abstract

Botnets, overlay networks built by cyber criminals from numerous compromised network-accessible devices, have become a press-
ing security concern in the Internet world. Availability of accurate mathematical models of population size evolution enables
security experts to plan ahead and deploy adequate resources when responding to a growing threat of an emerging botnet. In this
paper, we introduce the Susceptible-Infected-Connected (SIC) botnet model. Prior botnet models are largely the same as the models
for the spread of malware among computers and disease among humans. The SIC model possesses some key improvements over
earlier models: (1) keeping track of only key node stages (Infected and Connected), hence being applicable to a larger set of botnets;
and (2) being a Continuous-Time Markov Chain-based model, it takes into account the stochastic nature of population size evolu-
tion. The SIC model helps the security experts with the following two key analyses: (1) estimation of the global botnet size during
its initial appearance based on local measurements; and (2) comparison of botnet mitigation strategies such as disinfection of nodes
and attacks on botnet’s Command and Control (C&C) structure. The analysis of the mitigation strategies has been strengthened by
the development of an analytical link between the SIC model and the P2P botnet mitigation strategies. Specifically, one can analyze
how a random sybil attack on a botnet can be fine-tuned based on the insight drawn from the use of the SIC model. We also show
that derived results may be used to model the sudden growth and size fluctuations of real-world botnets.
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1. Introduction

Botmasters, the cyber criminals behind botnets, leverage a
wide range of malware vectors to infect network-accessible de-
vices, with the majority of the devices being personal comput-
ers in homes, businesses, schools, and governments. Once in-
fected, these devices (or nodes) form botnets and are remotely
controlled by the botmasters for illicit activities such as sending
e-mail spam and extortion by threats of launching Distributed
Denial-of-Service (DDoS) attacks.

In recent years, the number of infected and remotely con-
trolled nodes in each of the major botnets has reached the order
of millions, e.g., the Mariposa botnet has been estimated to have
13 million computers across 190 countries [1]. Indicating how
much botnets are responsible for e-mail spams on the Internet,
a single takedown of a rogue ISP which hosted the main infras-
tructure of few botnets in November 2008 led to an instant drop
of 80% in the level of e-mail spams [2]. In another incident, the
country of Estonia came under a politically-motivated DDoS at-
tack in April 2007 which knocked off critical infrastructure and
the media [3]. The cumulative processing and bandwidth re-
sources at the disposal of cyber criminals are therefore enough
to severely attack any entity or temporarily knock entire coun-
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tries off the Internet; this has resulted in the designation of bot-
nets as a major security threat.

Analytical models may provide significant benefits in the
fight against botnets. When either a new botnet threat emerges
or an existing botnet goes into a rapid growth period due to a
new infection, then there are two main questions that we would
like to have answers to. One of them will be the determination
of seriousness of the threat, which requires prediction of the
size of the botnet as a function of time. This will let us know
the number of nodes that eventually may be compromised. The
other will be to determine the appropriate mix of mitigation
strategies that need to be deployed to stop the growth of the
botnet and possibly reverse it. In both cases, a good analyti-
cal model will be helpful if the estimates of its parameters are
available. As a result of the growing botnet threat, new orga-
nizations are emerging that continuously keep track of botnets
and measure their sizes. Thus, it is expected that the estimates
of the model parameters will become available so that analyti-
cal models may be used to give answers to the above questions.

To this end, we develop an analytical model tailored to
botnet, its expansion and evolution behaviors. Each Internet
node/host goes through several stages during the lifetime of the
botnet. The stages, and the back-and-forth transition between
them, associated with an Internet node that can join a botnet
are more complex compared to those of an infected computer
(node) which remains isolated. These complex node stage char-
acteristics lead to a botnet expansion behavior that cannot be
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explained or predicted using the available analytical models for
computer malware propagation. Further, as shown in the Re-
lated Work section, recent analytical botnet models have not
addressed this issue adequately. In this work, we intend to fill
this gap.

The contribution of this paper is twofold: (1) the SIC bot-
net model which captures the key node stages relevant to
botnets; we derive important results such as mean and vari-
ance of the number of nodes in different stages based on this
model; and (2) development of a link between a botnet lifecy-
cle/propagation/population model (the SIC model) and mitiga-
tion strategies aimed at Distributed Hash Table (DHT)-based
Peer-to-Peer (P2P) botnets; with this analytical link, a security
expert would be able to evaluate different mitigation strategies
(disinfection, Sybil attack, Index Poisoning, etc.) prior to their
implementation.

The paper is organized as follows: in Section 2, we exam-
ine the prior modeling efforts in this domain by introducing
and analyzing both stochastic and deterministic botnet mod-
els. In Section 3, the SIC model is introduced by describing
the Continuous-Time Markov Chain (CTMC) model as well as
justifying the modeling assumptions. We then present an ex-
tensive performance modeling of the SIC Model in Section 4.
First, the fundamental probability flow equations resulting from
the CTMC model are presented. We then proceed to derive the
means, variances, and Basic Reproduction Number of the SIC
model. Afterwards, we introduce the developed link between
the SIC model and mitigation strategies aimed at DHT-based
P2P botnets. As a case study, we analyze a random sybil attack
on a P2P botnet and examine how the attack can be fine-tuned
based on the information provided by the SIC model. Next, we
study in Section 5 how the results estimated by the SIC model
would relate to some of the reported botnet size measurements.
In Section 6, numerical results are provided showing the kinds
of insight that can be drawn from the SIC model based on the
aforementioned derived analytical results. Finally, we conclude
the paper in Section 7 by providing some final thoughts as well
as mentioning our future work.

2. Related Work

Abstracting away the name of actors in the system to be
modeled, developing analytical models for spread of computer
virus, expansion of botnets and disease spread (biology) are
similar problems. In the past two decades, researchers have
adapted the analytical results from epidemiology to malware
propagation and, recently, to botnet lifecycle modeling. We
limit, however, the overview in this section to studies regarding
botnet population/lifecycle modeling to ensure that the models
can be reasonably compared to one another.

In computer science, the term virus was first used in late
1980’s to refer to a “self-replicating” code intended to do dam-
age. Facing this new phenomenon, [4] was the first study
that suggested the application of epidemiology for studying the
propagation of computer virus. In the course of the two decades
that followed, numerous other analytical models based on the

same premises were proposed such as [5–8]. Before examining
the related work, few definitions are due:

Node Stage A node (an arbitrary network-accessible device in
the Internet) can be in either of the stages defined in the an-
alytical model (e.g., Susceptible and Infected stages). With
time, depending on the model, nodes can usually transition
from one stage to another. In this paper, we use the term
stage in the context of a node and the term state in the
context of the whole system to avoid confusion; the termi-
nology of the cited works has been adapted to be compat-
ible with ours. State of the system, therefore, is used to
indicate the number of nodes that are in each stage at any
given time.

Lifecycle Lifecycle indicates the fact that nodes change stage
in the lifetime of the botnet. Botnet refers to the nodes that
are in a certain stage, e.g., in the Connected stage in the
SIC model. Botnet lifecycle, on the other hand, indicates
the fact that the botnet itself appears, expands, shrinks, and
disappears, as a collection of nodes that are in a certain
stage within the overall system which is the Internet.

2.1. Stochastic vs. Deterministic Modeling

When considering the analytical models, it is important
to consider that every analytical model for botnet expan-
sion/lifecycle falls into either of the following two broad cat-
egories: deterministic and stochastic. While a deterministic
model is easy to develop and analyze, it does not allow some
critically important analysis permitted by a stochastic model
which is relatively more difficult to construct and analyze.
Specifically, the botnet population size is a stochastic process
since dynamics of botnet expansion is probabilistic. In the de-
terministic models, the botnet population size is assumed to be
a deterministic variable and the arrivals/departures to/from the
population are also assumed to have deterministic values. As a
result, the population size as a function of time is governed by
an ordinary differential equation which is written in an ad hoc
manner. The deterministic models may capture the mean popu-
lation size accurately, however, this approach neither gives the
distribution of the population size nor its higher moments. On
the other hand, increasing the number of node stages causes
a stochastic model to become intractable far more quickly in
comparison to a deterministic model; therefore, when devel-
oping a stochastic model, it becomes imperative to limit the
number of node stages considered. In what follows, stochastic
models are introduced first, followed by deterministic ones.

2.1.1. Stochastic Models
In [9], the population size of the Storm botnet has been stud-

ied through simulation of a Stochastic Activity Network (SAN)
model (a variant of stochastic Petri nets). The SAN model and
its parameters have been loosely based on the information gath-
ered on the Storm Worm botnet. The SAN models the lifecy-
cle of a node with four stages: Susceptible, InitialBotInfection,
ConnectedBot, and FullyConnectedBot. It is assumed that the
number of nodes in the Susceptible stage is infinite and the time
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interval for a node to move from one stage to the next one in
the last three stages are exponentially distributed with differ-
ent parameters. It has been also assumed that the move of a
node between stages succeeds with certain probability and un-
successful nodes are removed from the experiment. Success
probabilities may be used to account the impact of mitigation
strategies on the growth of the botnet. The paper presents sim-
ulation results for the mean population size of nodes in Fully-
ConnectedBot stage as a function of time for different success
probabilities between stages. It may be seen that when success
probability is one, the botnet grows exponentially.

[10] has introduced “genetic mechanism” as the topology
construction mechanism of botnets. Through this modeling
method, they study “in-degree distribution”, shortest distance,
and clustering coefficient of the constructed topology. The
study, however, lacks results regarding botnet size and various
parameters thereof.

[11] investigated P2P botnet topologies using the stochastic
Monte Carlo simulation. Under worm infection and user coun-
termeasures, the metrics of “number of peers” and “botnet size”
have been studied which leads to the determination of robust-
ness and effectiveness of the formed P2P botnets. Like [9], the
usefulness of this study is limited due to the used simulation
environment and the study lacks formulas to examine the bot-
net size, which in general limits any botnet analysis by a third
party.

A probability model to estimate the number of machines in-
fected per hour with the Conficker-C worm has been presented
in [12]; the work includes derivation of the distribution of the
number of hourly UDP connection attempts made by an in-
fected host and the conditional distribution of the number of
observed hits in the monitored IP space. While being a solid
analytical study, this is a one-stage model, i.e., it cannot keep
track of more than one node stage. An analytical botnet model,
however, needs to simultaneously keep track of at least two sets
of nodes: (1) nodes which are infected by the initial malware;
and (2) the infected nodes which subsequently managed to join
the botnet.

A schematic diagram representing the movement of nodes
between several stages was presented in [13] in order to model
“botnet propagation.” The study, however, lacks an analyti-
cal, simulation, or measurement component, nor does it have
an accompanying quantitative or qualitative analysis. It there-
fore does not seem possible to evaluate this study in the current
form.

Finally, [14] presented a model of worm’s propagation prob-
ability in a P2P overlay network using a fully-connected graph.
This model is limited to small networks, however, as having a
square matrix of dimension n, with n being the number of nodes
in the network, to define and examine the network topology and
botnet size leads to the model being unusable for Internet-scale
scenarios.

2.1.2. Deterministic Models
Inspired by epidemic models, there have been several de-

terministic models proposed in recent years [8, 15–18] based
on ordinary differential equations describing the flow of nodes

from one stage to another; these are briefly described as fol-
lows: [15] includes a model for the growth of the presented
P2P botnet which is dependent on the number of target hosts
that can be infected at any one time. [16] extended the clas-
sic Susceptible-Infectious-Removed (SIR) model by taking into
account the diurnal pattern, i.e., the effect of time zones in mal-
ware propagation. It is important to note that the SIC model
proposed in this paper is a model to estimate the botnet foot-
print/total size (i.e., not just live/awake nodes) at any given
time; diurnal patterns do not affect botnet footprint/total size.
Using the domain name redirection technique to gather data on
the Conficker botnet, [17] customized the SIR epidemic model.
[18], on the other hand, analyzes the relationship between the
number of infected hosts and propagation ratio based on the
SIR model, drawing an insight regarding the effects of different
propagation ratios on botnet scale and stability.

We conclude the Related Work section by introducing and
examining [8], as an example of prior botnet models, as fol-
lows: this model assumes finite node population of size N and
the lifecycle of nodes consists of four stages: (1) S stage: sus-
ceptible nodes that can become infected; (2) I stage: infectious
nodes that can infect the susceptible nodes; (3) V stage: in-
fectious nodes that can infect the susceptible nodes on top of
being active in botnet’s illicit activities (nodes autonomously
and probabilistically change stage between V and I); and (4) R
stage: removed/disinfected nodes that remain immune to all fu-
ture infection vectors utilized by the botmasters. The nodes in
stage V can either transition to stage R with the rate γ or tran-
sition back to stage S with the rate ρ. After the derivation of
a system of equations for the rates of change of (normalized)
number of nodes in various stages, the authors then proceed to
present some figures regarding the evolution of variable values,
focusing in each case on changing a specific parameter; one
such equation is as follows: ds(t)

dt = −β[i(t) + v(t)]s(t) + ρv(t).
The above work has several limitations: (1) this is a deter-

ministic model and does not account for the stochastic nature
of botnet node population changes; (2) the analysis only leads
to the mean number of nodes in different stages of node lifecy-
cle and higher moments cannot be obtained. Further, the results
may only be calculated numerically and no closed form results
are obtained for the mean values; and (3) in the model, new
infections depend on the number of nodes in Infected stages (I
and V), which is not usually the case in botnets (Infected nodes
not yet part of the botnet are generally not able to cause new
infections, e.g., see [19]).

3. The SIC Model

In this section, we present our botnet lifecycle model and
then develop its mathematical representation. We first introduce
the model basics and later elaborate on the main assumptions of
the model.

3.1. Introduction
As reported extensively in the literature [9, 20–22], a node,

when infected by a botnet-related malware, goes through mul-
tiple stages in the lifetime of the botnet, with the main stages
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Figure 1: SIC model: 2-dimensional birth-death CTMC
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Figure 2: SIC model: State-transition-rate diagram

being Susceptible, Infected, and Connected. Here are the defi-
nitions of these terms, as used in this paper:

Susceptible (S) A node is considered to be in the Susceptible
stage, if it is healthy, whether or not vulnerable. A vul-
nerable node can be infected through at least one of the
possibly many infection vectors (worm scans, e-mail at-
tachments, etc.) deployed simultaneously or sequentially
by the botmasters of a single botnet. On the other hand,
a node is invulnerable if either it cannot be infected by
any infection vector or the address is either unused or un-
routable/unreachable. As defined, the Susceptible node
population corresponds to the entire population of the In-
ternet. The term Susceptible refers to the fact that until
probed, one usually cannot determine whether or not the
node is vulnerable. A Susceptible node may either get in-
fected with the small probability p and possibly later be-
come part of the botnet or remain healthy throughout the
whole period with the large probability of 1− p. All nodes
are initially considered to be in the Susceptible stage.

Infected (I) The Infected stage denotes a stage in which a node
has been infected by any of the infection vectors that have
been utilized by the botmasters. In this stage, the node
usually does not have the full malware code to engage in

illicit activities; this is primarily for keeping the payload
small. The minimal malware code serves only to connect
the node to the botnet and pass the node to the Connected
stage.

Connected (C) The Connected stage refers to the stage when
the node is connected to the botnet, can download the full
malware code and receive the botmasters’ Command &
Control (C&C) traffic, and therefore, it is part of the army
of bots controlled by the botmasters.

As we model the lifecycle of a node with the aforemen-
tioned three stages, the model is referred to as the Susceptible-
Infected-Connected (SIC) model. In Fig. 1, we show the stages
of the model and the transitions between the stages. As shown
in the figure, we let n1 and n2 denote the number of nodes in In-
fected and Connected stages, respectively, and the state of the
system is represented by the vector (n1, n2). In Fig. 2, we show
all the transitions from and to state (n1, n2).

In this model, we consider that each node in the botnet (nodes
in Connected stage) infects one Susceptible node (increases n1
by one) with probability λ1∆t + o(∆t) in any ∆t interval (cf.
Fig. 1). Thus the time interval for a Connected node to infect a
Susceptible node is exponentially distributed with parameter λ1
and the transition rate between Susceptible and Infected stages
is given by λ1n2. Further, each Infected node can transition
to Connected stage (which increases n2 and decreases n1) with
probability λ2∆t + o(∆t) in any ∆t interval. Finally, there is a
transition rate (λan2) from Connected stage to Infected stage.
This transition rate represents an attack on the botnet, attacks
such as index poisoning and sybil attacks in the case of P2P
botnets. Under such attacks, nodes do not transition back to
Susceptible stage; they just lose the ability to communicate and
might be able to reconnect again (hence the rate from Con-
nected stage back to Infected stage). We further assume the
rate of disinfection of nodes which are in Infected stage and
Connected stage to be λr1n1 and λr2n2, respectively.

3.2. Model Assumptions
In this sub-section, we put forward the reasoning behind the

assumptions made in the development of the SIC model. To the
best of our knowledge, these assumptions are reasonable math-
ematically as well as consistent with precedence and evidence
from closely-related phenomena such as malware propagation
and spread of human disease.

3.2.1. CTMC (Exponential probability distributions) Modeling

Continuous-time Markov Chain (CTMC) models are based
on the assumption that the time intervals for the transitions of
nodes from one stage to the next one are exponentially dis-
tributed with different parameters. In this part, we first pro-
vide the mathematical basis for the use of exponential distri-
butions and then describe how this assumption is in agreement
with precedence.

A. Mathematical Basis: Each attempt to make a node transi-
tion from any stage to another stage is a Bernoulli trial with suc-
cess probability of p. We explain how this concept of Bernoulli
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trial corresponds to physical reality first for the transition from
Susceptible to Infected (S → I) which is the most important
transition in the model leading to the exponential growth of the
number of nodes in the Infected and Connected stages. At the
end, we briefly explain how the same concept of Bernoulli trial
also corresponds to physical reality for the rest of the transitions
in the SIC model.

Most botnets apply worm-scanning methods to recruit new
bots [23]. Further, it has been reported that 66.5% of scan pat-
terns are uniform random scanning [24]. To explain the process
with a concrete example, we therefore consider uniform random
scanning as the infection vector used by the botnet node. Using
the terminology presented in [25], for a uniform scan worm, η is
the average scan rate, i.e., the average number of scans a botnet
node sends out per unit of time. Each scan corresponds to an
attempt to infect a susceptible node. If the susceptible node is
vulnerable to this specific worm scan, then, it will be infected,
otherwise the attack will fail and the node will remain healthy.
η is therefore equal to m, which is the number of aforemen-
tioned Bernoulli trials. The campaign of a single botnet node
to infect can then be viewed as a series of Bernoulli trials with
few successes/infections among many failures.

The above series of Bernoulli trials has therefore a Bino-
mial distribution with parameters p (success probability) and
m (number of Bernoulli trials). A Binomial distribution can be
approximated by a Poisson distribution with parameter λ = mp,
when p is small and m is large [26, pp.111-3]. Note that m is
different from n1 and n2 which denote the numbers of Infected
and Connected nodes, respectively, however, the λ parameter
refers to λ1 indicated in Fig. 1. The conditions on the values of
m and p are consistent with the S→ I transition, as the success
probability is low and the number of trials is large. Therefore,
the probability distribution of the number of nodes making tran-
sitions in unit time period can be approximated by this Poisson
distribution. Further, as sum of processes each having a Poisson
distribution with parameter λ1 also has a Poisson distribution,
the whole arrivals into the Infected stage due to all botnet nodes
then have a Poisson distribution with parameter λ1n2. From the
Poisson distribution, it follows that the time intervals between
node arrivals to the Infected stage are exponentially distributed.

As noted at the beginning, we provide a brief explanation
regarding how the same concept of Bernoulli trial also corre-
sponds to physical reality for the rest of the transitions in the
SIC model as follows:

I→ C Each Infected node which has the minimal malware
code to help it to connect itself to the botnet makes, on
average, several attempts to either connect to the central
C&C server or find peers in a P2P botnet. As such, we
can designate a success probability of p for the successful
connection to the botnet for these attempts each of which
can be considered a Bernoulli trial.

C→ I When the botnet is under attack, the effort to disconnect
each botnet node can also be considered a Bernoulli trial
with a success probability of p which is the probability of
disconnection. As botnet mitigation strategies are gener-
ally complicated and hard to implement with often limited

impact on the botnet, on average, this per-node success
probability is small.

I→ S & C→ S Similar to the attack on the botnet, each at-
tempt to disinfect a node that is in either stages of Infected
or Connected can be considered a Bernoulli trial with a
success probability of p, i.e., the probability of disinfec-
tion. As the identification of most nodes as well as the
physical access to them are hard, on average, this success
probability is small.

With the aforementioned descriptions for the characteristics of
all the inter-stage transitions, the CTMC model can be consid-
ered a reasonable approximation.

B. Accordance with Precedence: CTMC as a modeling tool
in epidemiology has a proven track record [27] that deals with
the phenomenon of spread of an element within a susceptible
population which has a close resemblance to the spread of mal-
ware and the expansion of a botnet. Further, successful use
of CTMC models in the study of spread of malware has also
been documented [28]. Expansion, and size evolution, of bot-
nets happen under the influence of the same physical processes
as the ones affecting the spread of malware; therefore, the use
of the same CTMC theory for botnets is a natural extension.
To our knowledge, the only case of application of CTMC-like
models to botnets is the work of [9] which is a simulation
model that has been developed based on the measurement data
of the Storm botnet. Finally, in terms of the choice of Pois-
son distribution for the arrival of nodes into a stage (i.e., the
exponentially-distributed inter-arrival times), similar to the SIC
model, [12] has also determined this assumption to be reason-
able in the study of Conficker-C botnet/worm for the distribu-
tion of the number of UDP connection attempts made by an
infected host.

3.2.2. Node Stages and Transitions
A. Main Node Stages Considered: As described in Sub-

section 3.1, the main dynamics of botnets can be captured by
keeping track of the two main node stages, i.e., Infected and
Connected. On the other hand, as mentioned in Sub-section
2.1, the number of stages considered in a stochastic model, and
in our CTMC model in particular, must be limited if we are to
avoid an intractable model caused by consideration of several
node stages. Based on our extensive investigations and consid-
ering the prior work done in this field, the optimal tradeoff has
been determined to be the consideration of the aforementioned
two node stages (i.e., Infected and Connected), each being a
dimension in the CTMC and each having a finite number of
nodes, with Susceptible stage having infinite number of nodes.
An infinite susceptible population is a reasonable assumption,
since this population corresponds to the population of the entire
Internet which is an assumption made also in [9].

B. No Immune/Removed Stage Considered: As botmasters
use a plethora of methods to infect (and re-infect) the nodes,
it is reasonable to assume that a node is never in Immune (or
Removed) stage; therefore, we do not consider this stage in our
model. It is important to remember that existence and mainte-
nance of a botnet is independent of any infection vector (e-mail
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attachments, file sharing sites, worm scans, etc.) used by the
botmaster and obtaining immunity against one infection vector
still leaves the node susceptible to be re-infected through other
infection vectors.

C. Botnet’s Footprint vs. Live Population: Using the ter-
minology presented in [29], we emphasize that the SIC model
tracks the botnet’s “footprint” and not its “live population”. As
such, effects such as day/night differences and time zones which
impact the number of live botnet nodes at any given time, are
not taken into account. In the SIC model, Connected nodes rep-
resent the total number of botnet nodes, i.e., botnet’s footprint.
On the other hand, it is possible to use the SIC model and take
into account the effects of time zones and day/night differences
on λ parameters’ values as follows depending on the length of
the analysis period: (1) if the analysis period is around or less
than 24 hours, then, piecewise time-invariant parameters can be
used, i.e., we use different sets of values for the λ parameters in
each 12-hour analysis period to account for the day/night dif-
ferences and/or the time zones; and (2) if the analysis period
is significantly more than 24 hours, e.g., weekly size variations
are important as is the case in the analysis of FourLakeRiders
botnet in Section 5, then, the variations due to time zones and
day/night differences are insignificant and average parameter
values will yield accurate results.

D. Accommodating Time-variant Parameters: As pre-
sented, the λ parameters are considered constant throughout the
analysis period. It is however possible to use the SIC model
if these parameters change over time using piecewise time-
invariant parameters, i.e., in each piece of the analysis period,
we consider the parameters to be constant. The duration of each
piece can be decided upon on a case-by-case basis; an exam-
ple of this kind of analysis, with each piece duration to be a
week, is presented in Section 5. Another example of this kind
of analysis, as suggested in the above point, is to accommodate
the effects of time zones and the day/night differences when
the analysis period is less than 24 hours. In this case, we can
choose a 12-hour analysis period during which we consider the
λ parameters to be constant and can set low values for the λ
parameters during night time.

As described above, the SIC model and its main assumptions
are similar to the model in [9] which has been based on the gath-
ered information about the Storm botnet. These assumptions
were further justified mathematically and through comparison
to other similar works. As a result, we believe that we have
a realistic model, which leads us to two-dimensional Marko-
vian birth-death processes. Using the model, we can study the
size evolution of a botnet as well as effectiveness of mitiga-
tion strategies by monitoring the number of nodes that are in
Infected and Connected stages at any given time.

4. Performance Modeling of the SIC Model

In this section, we provide an extensive performance model-
ing of the SIC model. First, botnet size evolution phases and
initial state values for the SIC model are explained. We then
proceed to derive the probability flow equations based on the

two-dimensional CTMC of the SIC model. These probabil-
ity flow equations are further reduced to a partial differential
equation (PDE) of the probability generating function (PGF).
Directly from this PDE, we then derive the mean and variance
of the SIC model. Next, the derivation of the Basic Reproduc-
tion Number, which is a widely used parameter in epidemiology
and the study of malware propagation, is documented. We con-
clude this section by deriving a novel analytical result which
is a link between the SIC model and the mitigation strategies
against Distributed Hash Table (DHT)-based P2P botnets.

4.1. Botnet Size Evolution Phases and Initial State Values
A botnet may go through many phases during its lifecycle,

where a phase will refer to a period that system parameters (λ1,
λ2, λr1, λr2, and λa) remain constant. For example, when a
botnet appears for the first time, it will probably experience un-
hindered expansion as there will not be any active mitigation
strategies to counter its growth, thus λr1, λr2, and λa will be
zero. Typically, the botnet’s population will alternate between
sawtooth growth period followed by a period of relatively stable
population size [30]. The sawtooth growth begins with the re-
lease of a new infection; after sometime, it will be reversed with
the deployment of new counter measures until an equilibrium is
reached. Probably, new equilibrium population will have a size
greater than previous equilibrium size. In any phase, the SIC
model will apply with the end results of the preceding phase
providing the initial conditions (state values) to the next phase.

4.2. Probability Flow Equations and PDE of PGF
In this section, we determine the probability flow equations

and then, the partial differential equation (PDE) of the probabil-
ity generating function (PGF) describing the system. We write
probability flow equations through inspection from the state-
transition-rate diagram given in Fig. 2 by equating the rate of
change of probabilities at any state to the difference between the
total input/output flows to/from that state. Let Pn1,n2 (t) denote
the probability that the system is in state (n1, n2) at time t, then
the probability flow equations are given by:

dPn1,n2 (t)
dt

=λ1n2Pn1−1,n2 (t)+λr1(n1+1)Pn1+1,n2 (t)

+λr2(n2+1)Pn1 ,n2+1(t)+λ2(n1+1)Pn1+1,n2−1(t)

+λa(n2+1)Pn1−1,n2+1(t)

−(λ1n2+λr1n1+λr2n2+λ2n1+λan2)Pn1 ,n2 (t)〈
n1 > 0, n2 > 0

〉
(a)

dP0,n2 (t)
dt

=λr1P1,n2 (t)+λr2(n2+1)P0,n2+1(t)+λ2P1,n2−1(t)

−(λ1n2+λr2n2+λan2)P0,n2 (t) 〈
n1 = 0, n2 > 0

〉
(b)

dPn1,0(t)
dt

=λr1(n1+1)Pn1+1,0(t)+λr2Pn1 ,1(t)+λaPn1−1,1(t)

−(λr1n1+λ2n1)Pn1 ,0(t) 〈
n1 > 0, n2 = 0

〉
(c)

dP0,0(t)
dt

=λr1P1,0(t)+λr2P0,1(t) 〈
n1 = 0, n2 = 0

〉
(d)

(1)
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In order to solve (1) and derive the probability distribution
Pn1,n2 (t), a known method is to transform the equations of prob-
ability flows to a partial differential equation (PDE) of the prob-
ability generating function (PGF) which can be tackled using
known methods to solve PDEs. The relationship between the
PGF P(z1, z2, t) and the probability distribution Pn1,n2 (t) is as
follows: P(z1, z2, t) =

∑∞
n1=0

∑∞
n2=0 Pn1,n2 (t)zn1

1 zn2
2 .

The initial probability distribution is denoted by Pk1,k2 (0).
Here, we assume that the initial number of nodes in each stage
is constant (k1, k2). Though the initial derivations are condi-
tional, we will suppress the conditions for simplicity in express-
ing the PDE. This aspect, however, has been fully taken care of
in the derivation of means (e.g., see (C.5) and (C.6)) and later
in the derivation of variances.

We multiply each of the equations in (1) by zn1
1 zn2

2 , sum over
the respective ranges of n1 and n2, and then add them together.
After some simplifications and manipulations (detailed deriva-
tion provided in Appendix A), we arrive at the following PDE
of the PGF:

(λr1 + λ2z2 − λr1z1 − λ2z1) ∂P(z1,z2,t)
∂z1

+(λ1z1z2 + λr2 + λaz1 − λ1z2 − λr2z2 − λaz2) ∂P(z1,z2,t)
∂z2

−
∂P(z1,z2,t)

∂t = 0 (2)

Our efforts to solve the preceding PDE, however, have not
been successful, as detailed in Appendix B. Nonetheless, there
are publications reporting new solved cases of Abel/Lienard
equations (differential equations encountered in the process of
solving the PDE). Thus, it is possible that we may have the so-
lution of the PDE in the near future. We can still obtain from
the PDE the moments of botnet population size, as presented
next.

4.3. Derivation of the Time-dependent Mean and Variance of
Botnet Population Size

In this section, we derive the means and variances of the
number of nodes in Infected stage and Connected stage (bot-
net population size) as a function of time. Let Et[n1] and Et[n2]
denote the mean number of nodes that are in Infected and Con-
nected stages at time t, respectively, then:

Et[n1] =
∂P(z1, z2, t)

∂z1
|z1=z2=1 , Et[n2] =

∂P(z1, z2, t)
∂z2

|z1=z2=1

(3)
We take the derivatives of the PDE given in (2) with respect to
z1 and z2, separately. By setting z1 = z2 = 1 in each resulting
equation, we arrive at a set of ODEs of Et[n1] and Et[n2]. To
emphasize the time dependency of the means from here on, we
will denote Et[n1] and Et[n2] by E1(t) and E2(t), respectively.
Note that only the important steps of derivation are provided
here; the rest of the steps is in Appendix C. After the initial
steps outlined above and detailed in the appendix, we arrive at
the following set of ODEs: dE1(t)

dt = (λ1 + λa)E2(t) − (λ2 + λr1)E1(t)
dE2(t)

dt = λ2E1(t) − (λr2 + λa)E2(t)
(4)

We then proceed to derive E1(t) and E2(t) from the previous
set of ODEs as detailed in Appendix C; the final results are as
follows:

E1(t) =

[
exp

(
− 1

2 t (λT3 + λT1)
) (

k̄1λ2
(
− exp (tλT3)

)
+

(
k̄1λa − k̄1λr1 + k̄1λr2 + k̄1λT3 + 2λ1k̄2

)
exp (tλT3)

+2k̄2λa exp (tλT3) + k̄1λT3 + k̄1λ2 − k̄1λa + k̄1λr1

−k̄1λr2 − 2λ1k̄2 − 2k̄2λa

)]
/(2λT3)

(5)

E2(t) =

[
exp

(
− 1

2 t (λT3 + λT1)
) (

2k̄1λ2 exp (tλT3)

+
(
λ2k̄2 − k̄2λa + k̄2λr1 − k̄2λr2 + k̄2λT3

)
exp (tλT3)

−2k̄1λ2 + k̄2λT3 − λ2k̄2 + k̄2λa − k̄2λr1

+k̄2λr2

)]
/(2λT3)

(6)

where, λT1 = λ2 + λa + λr1 + λr2, λT2 = −λ1λ2 + λr2 (λ2 + λr1) +

λaλr1, and λT3 =
√
λT1

2 − 4λT2.

Next, we describe the derivation of variances, which are
given by:

σ2
1(t) = Et[n2

1] − (E1(t))2 , σ2
2(t) = Et[n2

2] − (E2(t))2 (7)

where:

Et[n2
1] =

∂2P(z1, z2, t)
∂z2

1

|z1=z2=1 +
∂P(z1, z2, t)

∂z1
|z1=z2=1

Et[n2
2] =

∂2P(z1, z2, t)
∂z2

2

|z1=z2=1 +
∂P(z1, z2, t)

∂z2
|z1=z2=1 (8)

Let us define:

ψ1(t) ,
∂2P(z1, z2, t)

∂z2
1

|z1=z2=1

ψ2(t) ,
∂2P(z1, z2, t)

∂z2
2

|z1=z2=1

ψ12(t) ,
∂2P(z1, z2, t)
∂z1∂z2

|z1=z2=1 (9)

Considering that E1(t = 0) = k̄1 and E2(t = 0) = k̄2, the preced-
ing functions have the following initial values:

ψ1(t = 0) = k̄2
1 − k̄1 , ψ2(t = 0) = k̄2

2 − k̄2 , ψ12(t = 0) = ¯k1k2
(10)

The variances are then given by:

σ2
1(t) = ψ1(t)+ E1(t)− (E1(t))2 , σ2

2(t) = ψ2(t)+ E2(t)− (E2(t))2

(11)
Next, we take the 2nd derivatives of the PDE in (2) with re-
spect to z1 and z2, separately. Further, we take the derivative
of the PDE with respect to z1 and then with respect to z2 (see
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Appendix D). By setting z1 = z2 = 1 in each resulting equa-
tion, we arrive at a set of ordinary differential equations, which
if written in terms of ψ1(t), ψ2(t), and ψ12(t) is, as follows:

dψ1(t)
dt =2(λ1 + λa)ψ12(t) − 2(λr1 + λ2)ψ1(t)

dψ2(t)
dt =2λ2ψ12(t) − 2(λr2 + λa)ψ2(t)

dψ12(t)
dt = − (λr1 + λ2 + λr2 + λa)ψ12(t) + λ2ψ1(t)

+ λ1E2(t) + (λ1 + λa)ψ2(t)

(12)

Finally, from the preceding set of ODEs, we obtain the vari-
ances, as explained in Appendix D.

4.4. Epidemiological Threshold: Basic Reproduction Number

Basic Reproduction Number1 (R0) is a widely used parame-
ter in epidemiology as well as in the study of malware propaga-
tion. In the context of botnets, this number is the mean number
of infections that any single botnet node can cause among the
population of susceptible nodes. The measurement of the mean
number is assumed to happen with the presence of mitigation
strategies that bring down the number of botnet nodes while the
remaining botnet nodes cause new infections. R0 is calculated
based on the rates used in the model. If R0 < 1, the botnet
will eventually disappear with probability one. If R0 > 1, how-
ever, there is a probability that the botnet size will continue to
increase exponentially.

Based on (4), the Basic Reproduction Number (R0) can be
derived in terms of various SIC model’s parameters using the
“Next Generation Matrix” method as follows (detailed deriva-
tion in Appendix E):

R0 =

√
λ2(λ1 + λa)

(λr2 + λa)(λ2 + λr1)
(13)

4.5. P2P Botnet Mitigation Strategies and the SIC Model

As our last analytical result, we present a link between life-
cycle (or propagation/population) models and the P2P botnet
mitigation strategies. Mitigation strategies aimed at Distributed
Hash Table (DHT)-based P2P botnets include sybil, index poi-
soning, and eclipse attacks. We base the discussion on random
sybil attack, however, the process is similar for other attack
types.

Sybil attack, first presented in [31], is an attack method under
which numerous clean nodes (sybils) are injected into the P2P
botnet, posing themselves as “legitimate” botnet nodes. They
then try to re-route, block, and corrupt the Command & Con-
trol (C&C) traffic, thereby lowering the efficiency of the C&C
mechanism of the botnet. In a DHT-based P2P botnet, nodes
find each other, construct their routing tables, and relay the

1In the theoretical epidemiology literature [27], Basic Reproduction Num-
ber (R0) generally refers to the onset of disease spread. Once the epidemic is
underway, and especially when control measures (mitigation strategies) are put
into effect, other terminologies such as “Control Reproduction Number (Rc)”
and “Effective Reproduction Number (Re)” are used instead to refer to essen-
tially the same threshold parameter. In this paper, we use the phrase “Basic
Reproduction Number (R0)” in all instances.

traffic to, or closer to, its intended destination based on normal
DHT methods. The botmaster also relies on the aforementioned
methods for the C&C of the botnet; therefore, the decreased ef-
ficiency of the C&C mechanism as a result of the sybil attack
translates into an inefficient botnet.

Random sybil attack on P2P botnets has been studied in [21].
The derived formula therein can be used to construct a relation-
ship between the number of sybils inserted in the network and
λan2, the transition rate from Connected stage to Infected stage
(cf. Fig. 1). The obtained formula for the random sybil attack
is the following [21]:

Ps(ns) =

(
1 −

ns

ns + n

) log2(ns+n)
b

(14)

Where:

Ps(ns) The probability that a botnet node successfully obtains
the commands of the botmaster.

ns The number of sybils inserted randomly in the network.

b The number of bits improved per step for a lookup (set to a
mid-range value of 5 in our study [21]).

n The botnet size. This is the value of n2 in our model.

We therefore note that 1 − Ps(ns) is the probability that a
botnet node is no longer able to receive the commands of the
botmaster as a result of the attack on the botnet (insertion of
sybils). This probability is therefore equal to λa∆t, as the lat-
ter is the approximate probability that a botnet node transitions
from Connected stage to Infected stage (i.e., the node gets dis-
connected).
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Figure 3: GreenAlienRiders (a Zeus-based botnet): initial un-
hindered botnet expansion estimated using the SIC model.
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(a) Reported weekly botnet size evolution
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(b) Botnet size evolution reconstructed using the SIC Model

Figure 4: FourLakeRiders (a Zeus-based botnet): botnet mitigation strategies analyzed using the SIC model. To produce Figs. 4b
and 5, parameter values have been chosen as follows: During the whole 5-week period, λ1 and λ2 are constant and set as follows:
λ1 = 0.042 and λ2 = 0.001. λr1 , λr2 , and λa are chosen as follows for each week: Part 1 (Week 36): λr1 = 0.0082 , λr2 = 0.0046
, and λa = 0; Part 2 (Week 37): λr1 = 0.0082 , λr2 = 0.0027 , and λa = 0; Part 3 (Week 38): λr1 = 0 , λr2 = 0 , and λa = 0; Part 4
(Weeks 39-40): λr1 = 0.0082 , λr2 = 0.0046 , and λa = 0.0057. All λ parameters are nodes/hour.
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Figure 5: FourLakeRiders botnet: size evolution of the number
of Infected nodes estimated using the SIC Model. Parameter
values are mentioned in the caption of Fig. 4

The aforementioned link between lifecycle models and the
P2P botnet mitigation strategies is therefore demonstrated using
the following formula:

λa∆t = 1 − Ps(ns) (15)

As seen in (14), Ps(ns) is a function of ns. At any instant of
time, a change in λa (i.e., ∆λa) is a result of a change in the
number of sybils (i.e., ∆ns). Based on (15), we can then ana-
lyze the relationship between the amount of change of λa with
respect to a change in the number of sybils inserted in the net-
work as follows:

λa + ∆λa

λa
=

1 − Ps(ns + ∆ns)
1 − Ps(ns)

(16)

5. SIC Model vs. Reported Botnet Measurements

In this section, we show that our results can be used to model
the botnets in the real-world. Measurements of the size of some
botnets have been reported on a weekly basis by Damballa [30].

Assuming that the employed measurement techniques capture
correctly the global size of the botnets, in this section, we exam-
ine how such measurement results would compare to the results
predicted by the SIC model. First, we examine a case of initial
unhindered botnet expansion, based on available data from a
Zeus-based botnet called GreenAlienRiders. Next, we will ex-
amine a case of deployment of mitigation strategies, based on
available data from another Zeus-based botnet called FourLak-
eRiders.

GreenAlienRiders is a botnet for which the initial unhindered
expansion phase has been captured and reported by Damballa
[30]. From the Damballa report, it appears that the botnet has
reached the size of about 6,000 nodes at Hour 12 of its ap-
pearance. To reach this size, using the SIC model, we can set
λ1 = 6.85 and λ2 = 0.1 (both nodes/hour). The result is shown
in Fig. 3. Further, Fig. 3 also shows the SIC model’s estimate
of the existing Infected nodes during this period.

FourLakeRiders, on the other hand, is a botnet for which de-
ployment of mitigation strategies can be analyzed based on a
portion of data of the botnet size evolution over time, a 5-week
period from Week 36 to Week 40, as captured and reported by
Damballa [30]. The data reported for this 5-week period lends
itself to an analysis with clear separation of effects of each of
the mitigation strategies. The scenario that follows, however,
represents one of potentially many possibilities. The reported
data on botnet size during this 5-week period is depicted in Fig.
4a. A scenario that fits this pattern of rise-and-fall is as follows:
during Week 36, the botnet size has reached an equilibrium; on
one side, the number of Infected and Connected nodes grow,
and on the other side, some mitigation strategies are reducing
the number of Infected and Connected nodes (λr1, λr2). During
Week 37, the aforementioned mitigation strategies weaken and,
during Week 38, they completely disappear, which results in a
steep growth of the size of the botnet. During Weeks 39 and 40,
all mitigation strategies are employed (λr1, λr2, and λa), which
results in a dramatic reduction in the size of the botnet. The
described scenario, and the chosen parameter values to make it
happen, are depicted and mentioned in Fig 4b. The potential
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number of Infected nodes are estimated using the SIC model as
well, as depicted in Fig. 5. As may be seen, during both expan-
sion and shrinkage, our results follow quite well the reported
data.

6. Numerical Analysis

In this section, we present some numerical results to further
illustrate the usefulness of the SIC model. First, we briefly in-
troduce some parameter estimation techniques which help with
the use of the SIC model. The first set of numerical results are
with regard to the analysis of the initial unhindered expansion
of a botnet. We then show how the SIC model could help with
the evaluation and comparison of mitigation strategies. Botnet
size standard deviation and utilization of Basic Reproduction
Number are then depicted and examined next. We conclude this
section by examining the developed analytical link between the
SIC model and the P2P botnet mitigation strategies through an
analysis of a random sybil attack on a P2P botnet. Throughout
this section, we plot the previously-derived analytical results by
assigning values to various parameters (λ1, λ2, λr1, λr2, and λa),
all with the unit of nodes/time unit (time unit can be hour, day,
week, or any other period). The plotted results are therefore
general as parameter values may be assumed to be nodes per
any time unit and then the plotted time-dependent performance
measures will be interpreted as functions of that time unit.

6.1. Model’s Parameter Estimation Techniques

Using the SIC model, the botnet size estimation problem has
reduced from having to estimate the global size of the botnet
to the estimation of the model’s parameters (λ1 and λ2) which
requires only local knowledge. On the other hand, values for
λr1, λr2, and λa depend on the type of disinfection and attack on
the botnet; as the mitigation strategies are being conducted by
the security experts, they will be able to reliably choose values
for these latter parameters.

As a starting point, we would suggest a consideration of the
following methods when trying to estimate values for λ1 and λ2:
(1) real botnet size measurements, if available, can be used to
estimate the parameter values (as done in Section 5); (2) local
measurements through Honeynet log analysis [32], for exam-
ple; and (3) a statistical approach to botnet virulence estimation
(vulnerability and infection rates estimation) [33].

6.2. Initial Unhindered Botnet Expansion

We first examine the unhindered botnet expansion that hap-
pens when the botnet first appears. In Fig. 6, we consider a
12-time-unit period during which the botnet expands. In this
initial phase, there is neither any attack on the botnet, nor any
removal (disinfection) from Infected/Connected stages; hence
we set λr1 = λr2 = λa = 0. We choose λ1 = 7 and λ2 = 0.1 as
the center values for these parameters; these values are based on
the values derived from the analysis of GreenAlienRiders bot-
net (cf. Fig. 3). We then examine how the mean values of the
number of nodes in Infected stage and Connected stage (botnet

size) would change over this initial expansion period by vary-
ing the parameter values in the following ranges: 0 ≤ λ1 ≤ 11
and 0 ≤ λ2 ≤ 0.2. In Figs. 6a and 6b, we set λ2 = 0.1 and ex-
amine the change of mean values over time by varying λ1 over
[0, 11]. In Figs. 6c and 6d, on the other hand, we set λ1 = 7
and examine the change of mean values over time by varying
λ2 over [0, 0.2]. Slicing Figs. 6b and 6d at t = 12, Figs. 6e
and 6f closely show how mean numbers would change over the
respective ranges of values for λ1 and λ2. Finally, Fig. 7 shows
the means along with the standard deviations.

6.3. Comparison of Mitigation Strategies

One of the main advantages of the SIC model is that it en-
ables the security experts to compare and analyze mitigation
strategies before deployment. In this sub-section, we study the
case where botnet faces attack and/or removal (disinfection)
and observe how severe these interventions must be in order
to contain or dismantle the botnet. In all scenarios, we assign
λ1 = 7 and λ2 = 0.1; their choice has no bearing on the follow-
ing analysis regarding λr1, λr2, and λa. Further, we assume the
mean number of Infected nodes and Connected nodes to be as
follows: E1(0) = k̄1 = 53484 and E2(0) = k̄2 = 6786; these
values are derived from Fig. 7 at t = 12 when λ1 = 7 and
λ2 = 0.1. We can then proceed to analyze how this particular
botnet would react to different mitigation strategies.

In Fig. 8, the solid line depicts the scenario where there are
no mitigation strategies and the number of Infected nodes and
the botnet size continue to increase. Dotted/dashed lines denote
scenarios under which different values chosen for λr1, λr2, and
λa result in different trajectories for the mean. In Fig. 8a, we
observe that the mean eventually goes to zero in only one sce-
nario, i.e., when all three strategies are employed at the same
time. Note that a large enough value chosen for λr1 would make
the mean number of nodes in Infected stage go to zero as well.
Fig. 8b depicts the same scenarios as in Fig. 8a, but this time,
the mean is for the nodes in Connected stage (botnet size). In
this particular case, we observe that the mean number of nodes
in Connected stage also eventually goes to zero in only one sce-
nario, i.e., when all three strategies are employed at the same
time.

We can therefore state that, all things being equal, re-
moval/disinfection from Connected stage (λr2) has the most ef-
fect on containing the size of the botnet (nodes in Connected
stage). Further, we intuitively deduce that it would be less
costly to combat a botnet if we implement all three strategies
at the same time, as we can choose moderate disinfection/attack
rates. Concentrating on a single strategy (disinfection or attack)
would mean that we need to choose a very high rate to achieve
a comparable effect. Having to choose a high rate is usually as-
sociated with high cost in the real world (e.g., the plan of mal-
ware removal from near 100% of computers is either infeasible
or extremely costly to implement).

6.4. Standard Deviation and Basic Reproduction Number

In Fig. 9, we draw the mean along with the standard devi-
ation in each sub-figure. Inclusion of standard deviation helps
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Figure 6: Initial unhindered botnet expansion. Mean number of nodes in Infected stage (Eu1(t)) and Connected stage (Eu2(t)).
Initial state values: Eu1(0) = k̄1 = 0, Eu2(0) = k̄2 = 1. The subscript u refers to the Unhindered expansion.
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stages. Initial state values: Eu1(0) = k̄1 = 0, Eu2(0) = k̄2 = 1. Parameter values: λ1 = 7, λ2 = 0.1 (both nodes/time unit)
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Figure 8: Comparison of mitigation strategies. Mean number of nodes in Infected stage (E1(t)) and Connected stage (E2(t)). Initial
state values: E1(0) = k̄1 = 53484, E2(0) = k̄2 = 6786; Parameter values: λ1 = 7, λ2 = 0.1; Scenario 1: unhindered expansion
(λr1 = 0, λr2 = 0, λa = 0); Scenario 2: only removal of Infected nodes (λr1 = 2, λr2 = 0, λa = 0); Scenario 3: only removal of
Connected nodes (λr1 = 0, λr2 = 2, λa = 0); Scenario 4: only attack on botnet (λr1 = 0, λr2 = 0, λa = 2); Scenario 5: three strategies
simultaneously (λr1 = 2, λr2 = 2, λa = 2). All λ parameters are nodes/time unit.
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Figure 9: Number of nodes in Infected stage (upper row figs.) and Connected stage (lower row figs.). Parameter values are as
follows: k̄1 = 53484 , k̄2 = 6786 , λ1 = 7 , λ2 = 0.1 , and λa = 0.2 for all sub-figures; for left sub-figures: R0 = 0.8, λr1 = 1, and
λr2(determined) = 0.8227 ; for center sub-figures: R0 = 1, λr1 = 0.8135, and λr2(determined) = 0.5880 ; and for right sub-figures:
R0 = 1.2, λr1 = 1, and λr2(determined) = 0.2545. All λ parameters are nodes/time unit.
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Figure 10: Relationship between the attack rate (λa) and the
number of sybils (Initial ns = 1000, n = k̄2 = 6786, and b = 5)

put the mean in its proper context; the higher the standard de-
viation gets, the less should be the importance of the precise
value of the mean in our interpretations. Since we consider that
all mitigation strategies are being implemented, the sub-figures
of Fig. 9 would be comparable to Fig. 8, as the chosen initial
state values (values for k̄1 and k̄2) are the same.

Furthermore, in Fig. 9, we use the derived formula for Basic
Reproduction Number (R0) to choose values for different pa-
rameters in a way that leads to the size of the botnet shrinking
(left sub-figs.), remaining constant (center sub-figs.) or grow-
ing (right sub-figs.). To achieve this, we choose sample values
for various parameters (except for λr2) and for R0; therefore, the
value of λr2 would be determined in order to satisfy (13).

6.5. Random Sybil Attack on DHT-based P2P Botnets

Finally, we provide a numerical analysis of the developed
relationship between the SIC model’s attack rate (λa) and the
number of sybils inserted in the P2P botnet. The analysis will
be the case of adding the sybils at t = 0 in Fig. 8, assuming an
instantaneous effect on the P2P botnet, and examining the situ-
ation in the next ∆t. The numerical result is derived from (16)
and depicted in Fig. 102. The figure demonstrates the relation-
ship between the percentage increase in the number of inserted
sybils and the resulting percentage increase in the value of λa.
The demonstrated relationship leads to the following insight:
once the sybil attack is underway, the value of ns is known and
the resulting λa can be measured. The security expert can then
determine, for example, how many sybils should be added in
order to arrive at a desired λa to have the intended mitigation
effect.

7. Concluding Remarks and Future Work

There is a lack of appropriate analytical models on botnets
in the literature. The prior work on botnets mostly consists of
either deterministic analytical or simulation-based models. The

2As the size of botnet changes with time, it is necessary to update the re-
spective calculated values in regular intervals to keep a close approximation.

deterministic models have the drawback of treating the botnet
size as a deterministic variable, which neglects the stochastic
nature of the evolution of botnets. These models only lead to
determination of the mean botnet population size and not to the
probability distribution of size or its higher moments. Further,
the existing models determine the mean botnet size numerically
and they have not obtained closed form expressions. On the
other hand, simulation-based models can be designed to cap-
ture the details of botnet lifecycle, but their results cannot be
easily replicated or used by others. Finally, we have shown that
our results may be used to model the size evolution of botnets,
including their sudden growth, in the real-world.

In this paper, we have developed a stochastic analytical
model that captures the dynamics of a botnet’s lifecycle. We
have modeled the lifecycle of a node in the system with three
stages referred to as, Susceptible, Infected, and Connected. Fur-
ther, we have assumed that the nodes in the Infected and Con-
nected stages may go back to Susceptible stage. We have mod-
eled the system using a two-dimensional Markov process and
derived a partial differential equation for the joint distribution of
the number of nodes in each stage. Though this equation could
not be solved, we were able to obtain closed form expressions
for the time dependent mean and variance of the population size
in each stage. It is possible to obtain even higher moments of
the botnet population size, but the results get too complicated.

To our knowledge, the demonstrated relationship between a
lifecycle/population model and the P2P botnet mitigation strate-
gies is the first of its kind presented in the open literature. The
developed relationship leads to a two-step, or recursive, anal-
ysis process: (1) examining the effect of the chosen λa on the
botnet size based on Eq. 4 for the means; and (2) examining the
relationship between a change of λa and the associated change
in the number of sybils based on Eq. 16. We are currently work-
ing on the integration of these two steps which entails changes
to the SIC model itself and leads to an analytical model specific
to DHT-based P2P botnets.

Appendix A. Deriving a PDE from the Differential-
Difference Equations

We can write (1.a) as follows:

∑∞
n1=1

∑∞
n2=1

dPn1 ,n2 (t)
dt zn1

1 zn2
2 = (A.1)∑∞

n1=1
∑∞

n2=1 λ1n2Pn1−1,n2 (t)zn1
1 zn2

2

+
∑∞

n1=1
∑∞

n2=1 λr1(n1+1)Pn1+1,n2 (t)zn1
1 zn2

2

+
∑∞

n1=1
∑∞

n2=1 λr2(n2+1)Pn1 ,n2+1(t)zn1
1 zn2

2

+
∑∞

n1=1
∑∞

n2=1 λ2(n1+1)Pn1+1,n2−1(t)zn1
1 zn2

2

+
∑∞

n1=1
∑∞

n2=1 λa(n2+1)Pn1−1,n2+1(t)zn1
1 zn2

2

−
∑∞

n1=1
∑∞

n2=1(λ1n2+λr1n1+λr2n2+λ2n1+λan2)Pn1 ,n2 (t)zn1
1 zn2

2

And write (1.b) as follows:

∑∞
n2=1

dP0,n2
(t)

dt zn2
2 = (A.2)∑∞

n2=1 λr1P1,n2 (t)zn2
2 +

∑∞
n2=1 λr2(n2+1)P0,n2+1(t)zn2

2 +∑∞
n2=1 λ2P1,n2−1(t)zn2

2 −
∑∞

n2=1(λ1n2+λr2n2+λan2)P0,n2 (t)zn2
2
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Finally, we write (1.c) as follows:

∑∞
n1=1

dPn1 ,0
(t)

dt zn1
1 = (A.3)∑∞

n1=1 λr1(n1+1)Pn1+1,0(t)zn1
1 +

∑∞
n1=1 λr2Pn1 ,1(t)zn1

1

+
∑∞

n1=1 λaPn1−1,1(t)zn1
1 −

∑∞
n1=1(λr1n1+λ2n1)Pn1 ,0(t)zn1

1

We now add together (A.1), (A.2), (A.3), and (1.d). Here is the
result:

∂P(z1,z2,t)
∂t =∑∞

n1=1
∑∞

n2=1 λ1n2Pn1−1,n2 (t)zn1
1 zn2

2 (A.4)
+

∑∞
n1=0

∑∞
n2=0 λr1(n1+1)Pn1+1,n2 (t)zn1

1 zn2
2 (A.5)

+
∑∞

n1=0
∑∞

n2=0 λr2(n2+1)Pn1 ,n2+1(t)zn1
1 zn2

2 (A.6)
+

∑∞
n1=0

∑∞
n2=1 λ2(n1+1)Pn1+1,n2−1(t)zn1

1 zn2
2 (A.7)

+
∑∞

n1=1
∑∞

n2=0 λa(n2+1)Pn1−1,n2+1(t)zn1
1 zn2

2 (A.8)
−

∑∞
n1=0

∑∞
n2=0(λ1n2+λr1n1+λr2n2+λ2n1

+λan2)Pn1 ,n2 (t)zn1
1 zn2

2 (A.9)

We write (A.4) as follows:

∑∞
n1=1

∑∞
n2=1 λ1n2Pn1−1,n2 (t)zn1

1 zn2
2 (A.10)

=λ1z1
∑∞

n1=1
∑∞

n2=1 n2Pn1−1,n2 (t)zn1−1
1 zn2

2

=λ1z1z2
∑∞

n1=0
∑∞

n2=0 n2Pn1 ,n2 (t)zn1
1 zn2−1

2

=λ1z1z2
∂P(z1 ,z2 ,t)

∂z2

And (A.5) as follows:

∑∞
n1=0

∑∞
n2=0 λr1(n1+1)Pn1+1,n2 (t)zn1

1 zn2
2 (A.11)

=
∑∞

n1=0
∑∞

n2=0 λr1
n1+1

z1
Pn1+1,n2 (t)zn1+1

1 zn2
2

=
∑∞

n1=1
∑∞

n2=0 λr1n1Pn1 ,n2 (t)zn1−1
1 zn2

2

=λr1
∂P(z1 ,z2 ,t)

∂z1

And (A.6) as follows:

∑∞
n1=0

∑∞
n2=0 λr2(n2+1)Pn1 ,n2+1(t)zn1

1 zn2
2 (A.12)

=
∑∞

n1=0
∑∞

n2=0 λr2
n2+1

z2
Pn1 ,n2+1(t)zn1

1 zn2+1
2

=
∑∞

n1=0
∑∞

n2=1 λr2n2Pn1 ,n2 (t)zn1
1 zn2−1

2

=λr2
∂P(z1 ,z2 ,t)

∂z2

And (A.7) as follows:

∑∞
n1=0

∑∞
n2=1 λ2(n1+1)Pn1+1,n2−1(t)zn1

1 zn2
2 (A.13)

=
∑∞

n1=0
∑∞

n2=1 λ2(n1+1) z2
z1

Pn1+1,n2−1(t)zn1+1
1 zn2−1

2

=
∑∞

n1=1
∑∞

n2=0 λ2n1
z2
z1

Pn1 ,n2 (t)zn1
1 zn2

2

=λ2z2
∑∞

n1=0
∑∞

n2=0 n1Pn1 ,n2 (t)zn1−1
1 zn2

2

=λ2z2
∂P(z1 ,z2 ,t)

∂z1

And (A.8) as follows:

∑∞
n1=1

∑∞
n2=0 λa(n2+1)Pn1−1,n2+1(t)zn1

1 zn2
2 (A.14)

=
∑∞

n1=1
∑∞

n2=0 λa(n2+1) z1
z2

Pn1−1,n2+1(t)zn1−1
1 zn2+1

2

=
∑∞

n1=0
∑∞

n2=1 λan2
z1
z2

Pn1 ,n2 (t)zn1
1 zn2

2

=λaz1
∑∞

n1=0
∑∞

n2=0 n2Pn1 ,n2 (t)zn1
1 zn2−1

2

=λaz1
∂P(z1 ,z2 ,t)

∂z2

Finally, (A.9) as follows:
∑∞

n1=0
∑∞

n2=0(λ1n2+λr1n1+λr2n2+λ2n1+λan2)Pn1 ,n2 (t)zn1
1 zn2

2

=
∑∞

n1=0
∑∞

n2=0(λr1+λ2)n1Pn1 ,n2 (t)zn1
1 zn2

2

+
∑∞

n1=0
∑∞

n2=0(λ1+λr2+λa)n2Pn1 ,n2 (t)zn1
1 zn2

2

=(λr1+λ2)z1
∑∞

n1=0
∑∞

n2=0 n1Pn1 ,n2 (t)zn1−1
1 zn2

2

+(λ1+λr2+λa)z2
∑∞

n1=0
∑∞

n2=0 n2Pn1 ,n2 (t)zn1
1 zn2−1

2

=(λr1+λ2)z1
∂P(z1 ,z2 ,t)

∂z1
+(λ1+λr2+λa)z2

∂P(z1 ,z2 ,t)
∂z2

(A.15)

Replacing (A.4) through (A.9) with the ones derived in (A.10)
through (A.15), after simplification, we arrive at (2).

Appendix B. Attempt to Solve the PDE Using Method of
Characteristics

We describe our efforts to solve the partial differential equa-
tion (2) describing the system. Following the Method of Char-
acteristics [34, p.432] to solve PDEs, based on (2), we can
write: 

∂t
∂s = −1 (a)
dP
ds = 0 (b)
∂z1
∂s = λr1+λ2z2−λr1z1−λ2z1 (c)
∂z2
∂s = λ1z1z2+λr2+λaz1−λ1z2−λr2z2−λaz2 (d)

(B.1)

where s is a parametric variable and P = P(z1, z2, t) is the
PGF. With the initial condition P(z1, z2, 0) = zk1

1 zk2
2 , we there-

fore have: 
t(s = 0) = 0 (a)
z1(s = 0) = i1 (b)
z2(s = 0) = i2 (c)
P(s = 0) = ik1

1 ik2
2 (d)

(B.2)

From (B.1.a) and (B.2.a), we have:

t = −s (B.3)

Likewise, from (B.1.b) and (B.2.d), we have:

P = (i1(z1, z2, t))k1 (i2(z1, z2, t))k2 (B.4)

Equations (B.1.c) and (B.1.d) are “non-separable”, i.e., we can-
not derive z1 and z2 from 1st order ordinary differential equa-
tions (ODEs). We therefore proceed as follows: from (B.1.c),
we derive z2:

z2 =
1
λ2

[
dz1

ds
+ (λr1 + λ2)z1 − λr1] (B.5)

Replacing z2 in (B.1.d) with the expression given in (B.5), after
some simplifications, we can write (B.1.d) as follows:

d2z1

ds2 + (λr1 + λ2 + λ1 + λr2 + λa)
dz1

ds

−λ1z1
dz1

ds
− λ1(λr1 + λ2)z2

1

+ ((λ1 + λr2 + λa)(λr1 + λ2) + λ1λr1 − λaλ2) z1

−(λ1 + λr2 + λa)λr1 − λr2λ2 = 0 (B.6)
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Equation (B.6) has the form of a second order Lienard equation
[35] given below:

d2z1

ds2 + (A + Bz1)
dz1

ds
+ Cz2

1 + Dz1 + E = 0 (B.7)

Equation (B.7) is not in the form of solvable cases presented
in [35, Sec.2.2.3-2], [36, pp.204-5], and [37]. As a further at-
tempt to solve (B.7), we have used the following substitution
suggested in [35, Sec.2.2.3-1]:

w =
dz1

ds
,

d2z1

ds2 = w′s = w′z1

dz1

ds
= w′z1

w (B.8)

The above substitution transformed (B.7) into an Abel equation
of the 2nd kind given below:

ww′z1
+ (A + Bz1)w + Cz2

1 + Dz1 + E = 0 (B.9)

Equation (B.9) is also not among the solvable cases presented
in [35, Sec.1.3.3-2].

Appendix C. Derivation of Means from the PDE of the
PGF

We take the derivative of (2) with respect to z1 as follows:

(−λr1 − λ2) ∂P(z1,z2,t)
∂z1

+(λr1 + λ2z2 − λr1z1 − λ2z1) ∂
2P(z1,z2,t)
∂z2

1

+(λ1z2 + λa) ∂P(z1,z2,t)
∂z2

+(λ1z1z2 + λr2 + λaz1 − λ1z2 − λr2z2 − λaz2) ∂
2P(z1,z2,t)
∂z2∂z1

−
∂2P(z1,z2,t)

∂t∂z1
= 0(C.1)

Setting z1 = z2 = 1 in (C.1) gives us the following equation:

dE1(t)
dt

+ (λ2 + λr1)E1(t) − (λ1 + λa)E2(t) = 0 (C.2)

We then take the derivative of (2) with respect to z2 as follows:

λ2
∂P(z1,z2,t)

∂z1
+ (λr1 + λ2z2 − λr1z1 − λ2z1) ∂

2P(z1,z2,t)
∂z2∂z1

+(λ1z1 − λ1 − λr2 − λa) ∂P(z1,z2,t)
∂z2

+(λ1z1z2 + λr2 + λaz1 − λ1z2 − λr2z2 − λaz2) ∂
2P(z1,z2,t)
∂z2

2

−
∂2P(z1,z2,t)

∂t∂z2
= 0(C.3)

Setting z1 = z2 = 1 in (C.3) gives us the following equation:

dE2(t)
dt

− λ2E1(t) + (λr2 + λa)E2(t) = 0 (C.4)

Re-arranging (C.2) and (C.4) gives us (4).
Taking (4) to Laplace domain, we can write:sE1(s |k1,k2) − k1 + (λr1 + λ2)E1(s |k1,k2) − (λ1 + λa)E2(s |k1,k2) = 0

sE2(s |k1,k2) − k2 − λ2E1(s |k1,k2) + (λr2 + λa)E2(s |k1,k2) = 0
(C.5)

where k1 and k2 are values of n1 and n2 at t = 0, respectively.
Note that k1 and k2 are variables themselves and their means are
obtained as follows:k̄1 =

∑∞
k1=0

∑∞
k2=0k1Pk1,k2 (t = 0)

k̄2 =
∑∞

k1=0
∑∞

k2=0k2Pk1,k2 (t = 0)
(C.6)

k̄1 and k̄2 are therefore the values of the means at t =

0. We then proceed to uncondition (C.5), i.e., we take∑∞
k1=0

∑∞
k2=0 {X} Pk1,k2 (t = 0), with X being each element of the

equation set. After simplification, we have:sE1(s) − k̄1 + (λr1 + λ2)E1(s) − (λ1 + λa)E2(s) = 0
sE2(s) − k̄2 − λ2E1(s) + (λr2 + λa)E2(s) = 0

(C.7)

E1(s) and E2(s) are then obtained as follows:

E1(s) =
k̄1s + k̄2(λ1 + λa) + k̄1(λr2 + λa)

s2+(λr2+λa+λr1+λ2)s+(λr2+λa)(λr1+λ2)−λ2(λ1+λa)
(C.8)

E2(s) =
s + λ2 + λr1

λ1 + λa
E1(s) −

k̄1

λ1 + λa
(C.9)

Finally, the inverse Laplace of E1(s) and E2(s) are obtained as
shown in (5) and (6).

Appendix D. Derivation of Variances from the PDE of the
PGF

Taking the derivative of (C.1) with respect to z1 (i.e., deriving
the 2nd derivative of (2) with respect to z1), we have:

(−λr1−λ2) ∂
2 P(z1 ,z2 ,t)

∂z2
1

+(−λr1−λ2) ∂
2 P(z1 ,z2 ,t)

∂z2
1

+(λr1+λ2z2−λr1z1−λ2z1) ∂
3P(z1 ,z2 ,t)

∂z3
1

+(λ1z2+λa) ∂
2 P(z1 ,z2 ,t)
∂z2∂z1

+(λ1z2+λa) ∂
2 P(z1 ,z2 ,t)
∂z2∂z1

+(λ1z1z2+λr2+λaz1−λ1z2−λr2z2−λaz2) ∂
3 P(z1 ,z2 ,t)

∂z2∂z2
1

−
∂3P(z1 ,z2 ,t)

∂t∂z2
1

=0 (D.1)

Likewise, taking the derivative of (C.3) with respect to z2 (i.e.,
deriving the 2nd derivative of (2) with respect to z2), we have:

λ2
∂2P(z1 ,z2 ,t)
∂z1∂z2

+λ2
∂2P(z1 ,z2 ,t)
∂z1∂z2

+(λr1+λ2z2−λr1z1−λ2z1) ∂
3P(z1 ,z2 ,t)

∂z2
2∂z1

+(λ1z1−λ1−λr2−λa) ∂
2P(z1 ,z2 ,t)

∂z2
2

+(λ1z1−λ1−λr2−λa) ∂
2P(z1 ,z2 ,t)

∂z2
2

+(λ1z1z2+λr2+λaz1−λ1z2−λr2z2−λaz2) ∂
3P(z1 ,z2 ,t)

∂z3
2

−
∂3P(z1 ,z2 ,t)

∂t∂z2
2

=0 (D.2)
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Finally, taking the derivative of (C.1) with respect to z2, we
have:

(−λr1−λ2) ∂
2 P(z1 ,z2 ,t)
∂z1∂z2

+λ2
∂2P(z1 ,z2 ,t)

∂z2
1

+(λr1+λ2z2−λr1z1−λ2z1) ∂
3P(z1 ,z2 ,t)

∂z2
1∂z2

+λ1
∂P(z1 ,z2 ,t)

∂z2
+(λ1z2+λa) ∂

2P(z1 ,z2 ,t)

∂z2
2

+(λ1z1−λ1−λr2−λa) ∂
2P(z1 ,z2 ,t)
∂z2∂z1

+(λ1z1z2+λr2+λaz1−λ1z2−λr2z2−λaz2) ∂
3P(z1 ,z2 ,t)

∂z2
2∂z1

−
∂3 P(z1 ,z2 ,t)
∂t∂z1∂z2

=0 (D.3)

Setting z1 = z2 = 1 in (D.1), (D.2), and (D.3) gives us (12).
In (12), we have three ODEs and three variables (ψ1(t),

ψ12(t), and ψ2(t)); therefore, we can find a unique solution by
solving this system of linear ODEs. Taking (12) to Laplace do-
main, we have:

sψ1(s|k1,k2)−k2
1+k1 =2(λ1 + λa)ψ12(s |k1,k2) − 2(λr1 + λ2)ψ1(s |k1,k2)

sψ2(s|k1,k2)−k2
2+k2 =2λ2ψ12(s |k1,k2) − 2(λr2 + λa)ψ2(s |k1,k2)

sψ12(s|k1,k2)−k1k2 =−(λr1 + λ2 + λr2 + λa)ψ12(s |k1,k2) + λ2ψ1(s |k1,k2)
+λ1E2(s |k1,k2) + (λ1 + λa)ψ2(s |k1,k2)

(D.4)
Like before, we then proceed to uncondition (D.4). After sim-
plification, we have:


sψ1(s) − k̄2

1 + k̄1 =2(λ1 + λa)ψ12(s) − 2(λr1 + λ2)ψ1(s)
sψ2(s) − k̄2

2 + k̄2 =2λ2ψ12(s) − 2(λr2 + λa)ψ2(s)
sψ12(s) − ¯k1k2=−(λr1 + λ2 + λr2 + λa)ψ12(s) + λ2ψ1(s)

+λ1E2(s) + (λ1 + λa)ψ2(s)
(D.5)

The solution of (D.5) (i.e., the expressions for ψ1(s) and
ψ2(s)) as well as the expressions for σ2

1(t) and σ2
2(t) are ex-

tremely lengthy; hence, they are provided in [38] instead due to
space constraints.

Appendix E. Basic Reproduction Number Calculation
through the “Next Generation Matrix”
Method

Based on the steps of the “Next Generation Matrix” method
[27, pp.160-5], we proceed as follows: From SIC model’s dif-
ferential equations for means (i.e., (4)), we extract the f and v
matrices:

f =

 (λ1+λa)E2(t)

λ2E1(t)

 v=

 (λ2+λr1)E1(t)

(λr2+λa)E2(t)

 (E.1)

F and V matrices would be therefore as follows:

F=

 0 λ1+λa

λ2 0

 V=

 λ2+λr1 0
0 λr2+λa

 (E.2)

The next generation matrix (K) would be as follows:

K = F×V−1

=

 0 λ1+λa

λ2 0

× 1
(λ2+λr1)(λr2+λa )

 λr2+λa 0
0 λ2+λr1


= 1

(λ2+λr1)(λr2+λa )

 0 (λ1+λa)(λ2+λr1)

λ2(λr2+λa) 0


K =

 0 λ1+λa
λr2+λa

λ2
λ2+λr1

0

 (E.3)

To derive R0, we proceed as follows:

det(K−R0×I)=0 (E.4)

where I is an identity matrix. We therefore have:

det

 −R0
λ1+λa
λr2+λa

λ2
λ2+λr1

−R0

 = 0

R2
0−

λ1+λa
λr2+λa

×
λ2

λ2+λr1
= 0

Basic Reproduction Number (R0) is therefore derived as noted
in (13).
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