€'Conco rdia

A Presence-based Messaging Application
ELEC 6861 Project

Masood Khosroshahy

m.kh@ieee.org - www.masoodkh.com

Instructor: Prof. Roch Glitho

December 12, 2009

Contents 2

Contents

1 Introduction 3
1.1 Choices e 3

2 Implementation 3

3 Protocols Design: Messages and Rules 8
3.1 Presence e e e 8
3.2 Session setup and termination oL 10
3.3 Messaging e e e e e 12
34 Exchangingfiles. 15

Masood Khosroshahy ELEC6861 Project Report

1 Introduction 3

1 Introduction

As per the specification, a presence-based messaging and file-exchange application has been
designed and implemented. Here is the scenario:

e Clients connect to the server and immediately declare their presence.

e A connected client can initiate a session by sending the request to the server along with
the preferred number of clients in the session.

e The server application checks the number of available clients for the session.

e The server application initiates a session between the clients, if preferred number of
clients are available.

e When the session is underway, participants can exchange messages and files.

e Only the session initiator can terminate the session.

1.1 Choices

The implementation has been done in Java using Socket programming (NetBeans IDE v.6.7.1
has been used for development). Protocols for signaling (presence and session establish-
ment/termination), message and file exchanges have been implemented on top of TCP (i.e.,
respective Socket type has been chosen) due to the reliability that it offers.

2 Implementation

The implementation is split into five classes and will be described briefly as follows:

A general Data object (see Figure 1), that is passed between the client and server, which
carries signal, message and file depending on how it’s been constructed on the originating
side. On the receiver side, Data object is read directly from the Socket and analyzed/parsed
according to its type. Using this method, Java API has been used to its fullest potential to
reduce the manual delimiter placing/parsing.

The client (see Figures 2 and 3) is implemented in a single class which has numerous
functions that are invoked based on the events triggered through the client GUL

The server application has a main class which relies on two other classes for its operations
(see Figures 4 and 5); one object per client which holds all client-specific references and one
thread per client which interacts with the client as long as the client is connected. The server
application creates two server Sockets (one socket for receiving, and responding to, client
signals and one socket dedicated to sending data to the client) at startup. It then listens to
incoming connections and will create a thread to interact with a new client.

Masood Khosroshahy ELEC6861 Project Report

2 Implementation 4

=i Data
Attributes

private int SIGHAL =0

private int MESSAGE = 1

private int FILE = 2

private int dataType = SIGMNAL
private String senderMickname
private String textContent

private String messageContent
private String filename = null

private byte fileByteArray[0..*] = null
private int numberParticipants =0

Operations
public vaid setDataType(int dataType)
public int getDataType()
public void setTextContent{ String textContent)
public String getTextContent{)
public void setMessageContent{ String messageContent)
public String getMessageContent(|
public void setSenderMickname(String senderMickname)
public String getSenderMickname()
public vaid setMumberParticipants(int numberFParticipants)
public int getMumberParticipants|)
public void setFileByteArray(byte fileByteAray[0. "])
public byte[0..*] getFileByteAray()
public void setFilename(String filename)
public String getFilename()

Figure 1: UML Class Diagram [Exchanged Data Object between Server and Client]

Masood Khosroshahy ELEC6861 Project Report

2 Implementation

ElMasoodConnect

Attributes

package Socket socket = null

package ObjectOutputStream ohjectCutputStream = null

package ObjectinputStream ohjectinputStream = null

package Socket dataSocket = null

package ObjectinputStream dataCibjectinputStream = null

private Data receivedData

private Data signal

private Data message = null

private String filename = null

private boolean isConnected = false
private boolean isListening = false
private JButton Cannect

private JButton Disconnect

private JButton Exit

private JTextArea Message

private JTextArea ReceivedMessage
private JButton SendMessage
private JTextField SewverAddress
private JTextFisld SewverPort

private JTextArea StatusMessage
private JButton cancelSession
private JTextField connectedClients
private JTextField fleMamePath

private JLabel jLabell
private JLahel jLabel2
private JLabel jLabel3
private JLabel jLabeld
private JLabel jLabel5s
private JLabel jLabels
private JPanel jPanell
private JPanel jPanel2
private JPanel jPanel3
private JPanel jPaneld
private JPanel jPanels
private JPanel jPanels

private JScrollPane jScrollPane?
private JScrollPane jScrollPane2
private JScrollPane jScrollPane3
private JTabbedPane [TabbedPane]
private JButton localAddresses
private JTextField locallPaddress
private JTextFizld nickname

private JTextField numberParticipants

private JButton reset

private JButton selectFile

private JButton sendFile

private JTextField serverDataFort
private JButton sessionRequest

private JPanel tabLocalAddresses
private JPanel tabSendMessage

private JPanel tabSettings

private JButton updateConnectedClients

Figure 2: UML Class Diagram [Client-side: Main App(Part 1)]

Masood Khosroshahy

ELEC6861 Project Report

2 Implementation 6

Operations
public MasoodConnect()

private void initComponents()

private void SendMessageActionPerfarmed(ActionEvent evt |
private void ExitActionPerdormed(ActionEvent evt)

private void ConnectActionPerformed{ ActionEvent evt)

private void DisconnectActionFerformed(ActionEvent et)
private void localAddressesActionPerformed(ActionEvent evt)
private void resetActionPerformed(ActionEvent evt)

private void updateConnectedClientsActionPerformed| ActionEvent evt)
private void sessionRequestActionPerformed(ActionEvent evt)
private void cancelSessionActionPerfarmed(ActionEvent evt)
private void selectFileActionPerformed| ActionEvent evt)
private void sendFileActionPerformed(ActionEvent evt)

public void main{ String args[0.."])

public byte[0.*] getBytesFramFile(File file)

Figure 3: UML Class Diagram [Client-side: Main App(Part 2)]

= MasoodConnectServer
Altribites

public String clientList[0..*

public String sessionParticipants[d..
public String sessionlnitiator = ""
public boolean sessionSenerlsfvailable = true

bl

Cperations
public void main{ String args[0..*])
public void distribute{ Data data)

clientinfoList|p.*

£ MasoodConnectServerClientinfo
Attributes
package String nickname = null
package Socket socket
package Socket dataSocket = null
package ChjectinputStream ohjectlnputStream = null
package ObjectOutputStream objectOutputStream
package OhjectOutputStream dataObjectDutputStream = null
package boolean isSessionParticipant
package boolean isSessioninitiatar = false

Operations

Figure 4: UML Class Diagram [Server-side: Main App]

Masood Khosroshahy ELEC6861 Project Report

2 Implementation 7

ElMascodConnectServerThread
Attributes

private Socket socket = null

private Socket dataSocket = null

private ObjectOutputStream ohjectOutputStream = null
private ObjectOutputStream objectDataCutputStream = null
private ObjectinputStream objectinputStream = null
private String clientMickname

private String messageCantent = null

private Data receivedData

private Data signal

private Data message = null

private int clientinfoListindex

Operations
public MasoodConnectServerThread(Socket socket, Socket dataSocket,
public void runf)

Figure 5: UML Class Diagram [Server-side: One thread per client]

Masood Khosroshahy ELEC6861 Project Report

3 Protocols Design: Messages and Rules 8

3 Protocols Design: Messages and Rules

In describing the sequence of messages for different aspects of the application, it might
be clearer to show the screenshots of the actual developed application, rather than using
abstract sequence diagrams. That is why in what follows, the designs of simple protocols for
presence, session establishment/termination, message and file exchanges are demonstrated
using screenshots.

3.1 Presence

Client needs to set the server address along with signal and data ports (see Figure 6).

| £ MasoodConnect Client EI

|’ Settings | Local | Session |'Message " File |

Client Nickname: |EID':J

Server
Address: [localhost | signal Port: (8388 |
| Connect H Disconnect | Data Port: |3889

Received Message

‘ | g

Connected clients

| |

Status Message

Sockets to server opened. |:| Reset |
x| Exit |

Figure 6: Presence: Client Connects to Server

Client sets its Nickname which should be unique; otherwise, it will not be accepted by
the server. When two sockets are created, client immediately sends its nickname. After re-
ceiving the nickname, server creates the Output Streams, starts a thread, passes the relevant
information to the thread and keeps all the references in an instance of “MasoodConnect-
ServerClientInfo” Class (see Figures 7, 8 and 9).

Masood Khosroshahy ELEC6861 Project Report

3 Protocols Design: Messages and Rules 9

private void ConnectActionPerformed(java.awt.event.ActionEvent evt) {

vy A

LAsEmptv () || ServerFort.getText () .isEmpty{))
ge.getText ("Server address or port oL det Ccorrectl it

L= ruaey

socket = new Socket (Serverhddress.getText (), Integer.parselnk(ServerPort

new ObjectCutputStream(sockst.getCutputStream()) ;

£ = new Seocket (Serveriddress.getT Integer.parselint|(server
ctInpubStream = new ObjectInputStr k=t.getInputStream |
StatusMessage.setTert ["SocC 3 Enes)z
= 1 = new Datal);

1.zecTextContent (nickname.getText ()) ;

ream.writefbject {signal);

Figure 7: Presence: Client Creates the Sockets and Sends its Nickname

BEX Adrministrator Command Prompt - java -jar MasoodConnectServer jar 5388 8823

C-“MazoodConnectApp~Server>java —jar MasoodConnectServer.jar 5888 8889
Boh Connected.

Alice Connected.

John Connected.

Figure 8: Presence: Server Receives Client’s Nickname Upon Connection - Output

if (isMicknameUnigue) {
System. srr.println (clientNickname + " Connected.");
clientlist.add (clientNickname) ;

new MasoodConnectServerThread (socket, dataSocket, threadCbhbjectInputStream, threadCbhjectlutp

MasogodConnectServerClientInfo clientInfo = new MasoodConnectServerClientInfol():;

clientInfo.n = clientNickname;

clientInfo. 1 = threadCbhjectlutputStream;

clientInfo.= e socket;
clientInfo.d } dataSocket;
clientInfo.cl tream = threadObjectInputStream;

clientInfo. ObjectlutputStream = threadDataCbjectOutputStream:

clientInfolist.add (clientiInfo) ;

Figure 9: Presence: Server Receives Client’s Nickname Upon Connection - Code

Masood Khosroshahy ELEC6861 Project Report

3 Protocols Design: Messages and Rules 10

3.2 Session setup and termination

After connecting to the server, a client can request a session. The client sends to the server
the number of desired participants. If the server is not busy and that number of clients are
available, server picks randomly from the connected clients to form a session of the desired
number (see Figures 10, 11 and 12).

| £ MasoodConnect Client e =

[Settings | Local | Session | Message | File |

Session Request

Ey

Number of participants: |3

-

[1 T
| Cancel Session | | Request Session

Figure 10: Session: Bob requests a session of 3

EM Administrator: Command Prompt - java -jar MasoodConnectServer.jar 8383 8833

C:wMazoodConnectApp~Server>java —Jjar MazoodConnectlerver.jar S888 85887
Bob Connected.

Alice Connected.

John Connected.

A sezzion of 3 is reguested by Boh

Figure 11: Session: Server receives the request and forms the session.

Status Message

éin:un granted. Participants: Bob Alice John | = Reset

q] [|

Exit

Figure 12: Session: Server confirms the session formation to Bob and mentions the participants.

A session can be canceled only by its initiator. If another session participant tries to cancel
the session, the server sends a signal informing the client that its request has been ignored
(see Figures 13, 14, 15 and 16).

Masood Khosroshahy ELEC6861 Project Report

3 Protocols Design: Messages and Rules 11

EX Administrator: Command Prompt - java -jar MasoodConnectServer,jar 8383 8889
C:isMazoodConnectApp~Server>java —Jjar MazoodConnectServer.jar B888 8887
Bob Connected.

Alice Connected.
John Connected.

A se=zzion of 3 is reguested by Bob
ezzion cancellation request received From Alice

Figure 13: Session: Alice sends a session cancellation signal to server

Status Message

Requestlgnored. You are not the sessiof—| Reset

4] I [[]

Exit

Figure 14: Session: Alice is notified that her request has been ignored since she is not the session
initiator.

B8 Administrator: Command Prompt - java -jar MasoodConnectServer.jar 8358 8859

C:sMazoodConnectAppsServer>java —Jjar MazoodConnectServer.jar 8888 88879
Bob Connected.

Alice Connected.

John Connected.

A session of 3 is reguested by Bob
Sesszion cancellation request received from Alice
Seszion cancellation reguest received from Boh

Figure 15: Session: Bob sends a session cancellation signal to server

Status Message

ISession Cancelled Reset

EIE

Exit

Figure 16: Session: Server cancels the session created by Bob.

Masood Khosroshahy ELEC6861 Project Report

3 Protocols Design: Messages and Rules 12

3.3 Messaging

When a session is underway, participants can send message to all session participants. To
send a message, a client sends a signal to the server. The type of signal is “DistributeMes-
sage” and its content is the message itself. When the server receives such a signal, it first
checks whether the sender is part of the session. If so, the server distributes the message to
all session participants (see Figures 17, 18, 19 and 20).

|£: MasoodConnect Client (o [E]E=]
| Settings [Local |/ Session |/ Message |/ File |
Client Message to Session
Hello folks! i
Send
Received Message
Bob: Hello folks! oz
Connected dlients
| | | Update
Status Message
ion granted. Participants: Bob John Alice |+ Reset
4] | ll [»] Exit

Figure 17: Messaging: Bob sends a message to the session (he receives his own message as well).

Masood Khosroshahy ELEC6861 Project Report

3 Protocols Design: Messages and Rules

13

]/Setl:ings |/ Local rSession rl.!essage r File |

Client Nickname: |Alice |

Server
Address: |I|:u:a|hnst | Signal Port: |85838 |
Connect Disconnect Data Port: 3889 |

Received Message
Bob: Hello falks! E<

Figure 18: Messaging: Alice receives Bob’s message

| £] MasoodConnect Client = | = |

l/SEIﬁngs |’ Local rSession ruesaage |’ File |

Client Hickname: |J|:|hn |

Sarver
Address: |Inca|hnst | Signal Port: |83383
Connect Disconnect Data Port: [8889

Received Message

Bob: Hello folks! |

:

Figure 19: Messaging: John also receives Bob’s message

Masood Khosroshahy

ELEC6861 Project Report

3 Protocols Design: Messages and Rules 14

private vold SendMessageActionPerformed(java.awt.event.ActionEvent evt) {

String fromUser = null;
try {

EromUzer = Message.getText();
= null) §
= new Datal):

if (fromUser

1.zetSenderNickname (nickname.getText (})

SetTextContent ("Distrik

uteMessaga™) ;

1.setMessageContent (fromUser) ;

Figure 20: Messaging: Client sends a signal to the server which contains the message.

Masood Khosroshahy ELEC6861 Project Report

3 Protocols Design: Messages and Rules 15

3.4 Exchanging files

In much the same way as messaging, session participants can exchange files. A client selects
a file and creates a Data object containing a Byte Array which in turn contains the Bytes read
from the file. The client then sends a signal to the server. The type of signal (Data object) is
“DistributeFile” and its content is the aforementioned Byte Array. When the server receives
the signal, it checks whether the sender is part of the session. If so, it distributes the Data
object to all session participants. Each of the session participants saves the file to disk from
the Byte Array as soon as they receive the Data object from the server.

| £, MasoodConnect Client E=5|EoE %)

[Settings rLocaI | Session rlﬁessage rFit{-:-
Send File to Session

File Hame/Path:

|C:‘.ME|500annnect#.pplClientExpim.jpg |

Select File Send
Received Message
=

Connected clients

| | Update
Status Message
A fite received from Alice and saved. ;1 Reset
[~ Exit

Figure 21: Exchanging files: Alice sends a file to the session (she receives her own file as well).

Masood Khosroshahy ELEC6861 Project Report

3 Protocols Design: Messages and Rules 16

v|¢f||5’eun:h

@Qr| |, <« Clientl »

File Edit ‘I.l"'rf:_w '_!_'::_m_Es Hf_:i_p

‘ Organize =

S

Mame Date modified
& lib

|=| [FromAliceToBob]picl jpg
|4 MaseodConnect,jar

Type Size

Figure 22: Exchanging files: Bob receives the file sent by Alice.

@Qv| L« Chlient2 » v|¢-1~||5.e|:.'n:h

File Edit View Teools Help

__ Views |; Burn

‘ Organize =
Date modified Type

Nameﬁ Size
b lib
= [FromAliceToAlice]picl.jpg
|£} MasoodConnect.jar

= picl.jpg

Figure 23: Exchanging files: Alice receives her own file as well.

@U'| 1 = Client3 » - |41~ | |Searrh
File Edit View Tools Help
B Organize ~ & Burn
NEF‘I"I-EA Size Date medified
i lib

|=| [FromAliceTolohn]picl jpg
|| MasoodConnect.jar

Figure 24: Exchanging files: John receives the file sent by Alice as well.

ELEC6861 Project Report

Masood Khosroshahy

