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1 Congestion Control Principles

1 Congestion Control Principles

The need for congestion control and dangers of neglecting to apply sound congestion control mech-
anisms are discussed in [1]. According to [1], TCP’s congestion avoidance mechanism has been
credited for being one of the reasons behind the success of the Internet. Maintaining the stability
of the Internet is very much dependent on the use of end-to-end congestion control by best-effort
traffic, yet, an increasing number of applications! choose not to use TCP as transport protocol or
otherwise be TCP-friendly in terms of congestion control. The main reasons for a flow to use end-
to-end congestion control are: 1) Prevention of congestion collapse of the Internet 2) Achieving
fairness in terms of share of the bandwidth that is obtained by the flow among competing flows in
a congested link 3) Optimizing its own performance metrics such as throughput, delay and loss.

The phenomenon of the Internet Congestion Collapse® was first experienced in mid 1980s which
prompted the addition of congestion avoidance mechanism to TCP which ensured that TCP flows
“back off” in response to congestion signals (dropped packets). Stability of the Internet, to a large
extent, depends on end-to-end congestion control as well as on router-based mechanisms which are
especially important in the face of a growing number of unresponsive flows (i.e. flows that do not
use end-to-end congestion control or otherwise do not back off in response to congestion).

A concern that was raised in the late 1990s was the decision by Internet Browser developers to
work around the congestion avoidance mechanism of TCP (which effectively slowed down transfer
rate) by opening multiple TCP connections to the same server. This issue was addressed in [5]
by providing guidelines for the maximum number of simultaneous persistent connections (with
maximum being two) that a client can open and maintain to any given destination/server. While
main Internet Browser vendors might have complied with this guideline, the issue has manifested
itself in another form with the advent of P2P applications with each client maintaining dozens of
simultaneous connections to its peers.

Two known scenarios that can cause congestion collapse are: 1) Unnecessary retransmission of
packets by TCP connections 2) Undelivered packets (waste of bandwidth is caused by transferring

the packets through the network only to be dropped before arriving at the destination). The first

'Multicast traffic and unicast traffic like streaming multimedia, to name a few.
The “Congestion Collapse” event reported in [2] with later consequent modifications to TCP detailed in [3, 4].
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scenario was largely responsible for the first congestion collapse experienced in the mid 1980s and
has been resolved to a large extent by improvements in timer and other congestion control mech-
anisms in recent implementations of TCP. However, the second scenario has remained unresolved
and threatens the stability of today’s Internet. Proliferation of applications not using end-to-end
congestion control, P2P applications with numerous simultaneous connections and applications
that increase their sending rate in response to increased drop rate in the network are breathing new
life into a scenario of incipient Internet congestion collapse. End-to-end congestion control by
the end nodes, the network guaranteeing the final delivery of accepted packets at congested links
and adherence of application developers to a non-aggressive use of the network could address the
concerns regarding congestion collapse of today’s Internet.

As detailed in [6], traditional “Drop-Tail” buffer management in router buffers has two main
shortcomings: 1) A single flow, or few flows, may take up the whole buffer space which results
in all other flows being locked out (which is a major fairness concern) 2) Drop-Tail policy allows
full or near-full steady-state buffer occupancy which results in high end-to-end delay (which is es-
pecially detrimental to the performance of interactive applications like Telnet and web browsers).
“Active Queue Management”, or AQM, refers to a policy based on which a router decides to drop
the arriving packets before the queue space is exhausted. Dropping packets leads to TCP sources
decreasing their sending rate which eventually means decreased aggregate arrival rate to the router
buffer from all the flows. AQM also leads to smaller steady-state queue sizes which presents the
option for routers to accept occasional bursts of packets thanks to available space in their buffers.
This in turn leads to higher link utilization as well as the previously-mentioned lower end-to-end
delay. Bursts of packets arriving at a router’s buffer is a frequent event and the capacity of ab-
sorbing these bursts using AQM corrects the bias against bursty traffic due to Drop-Tail policy and
its resulting steady-state near-full queue size. AQM prevents also existence of a full queue which
leads to simultaneous packet drops from all flows, hence global synchronization of TCP connec-
tions and periods of under-utilization of the link capacity. Finally, AQM solves the flow lock-out
phenomenon, present when using Drop-Tail policy, as AQM always ensures some buffer space for

incoming packets at all times.
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2 TCP Congestion Control Algorithms and
TCP-friendliness

TCP (Transmission Control Protocol) congestion control algorithms [4, 7] have played an important
role in avoiding the Congestion Collapse [3] in the Internet. In what follows, we briefly explain
how these algorithms interact to help a TCP flow avoid causing congestion in the network. The rate
at which a TCP sender can transmit segments is governed by two windows; the congestion window
(monitors congestion situation in the network) and the receiver’s advertised window (monitors
receiver side parameters such as buffer limits). Therefore, the TCP sender will be able to transmit
as fast as the minimum indicated by the two windows>.

When a TCP flow first starts, it enters a “slow-start” phase which is governed by a small initial
value for the congestion window. In each roundtrip time (RTT), the TCP sender can double the
congestion window and send faster, if so desired. The size of the congestion window however, is
limited by the value “ssthresh” set for the “slow-start” phase. As soon as this value is reached or
congestion is detected, “slow-start” phase ends. In case no congestion is detected, TCP’s “Additive
Increase, Multiplicative Decrease (AIMD)” algorithm takes over, entering the “congestion avoid-
ance” phase. In this phase, in each RTT, a TCP sender can increase the congestion window by at
most one segment. In case congestion is detected, the congestion window is halved. The AIMD
is designed to ensure that a source “backs off” quickly in congestion situations. To detect segment
loss, and congestion in the network, a TCP sender uses a “retransmit timer”. If the retransmit timer
expires without receiving a segment reception acknowledgement, the TCP sender infers that the
segment has been lost. It then ends the AIMD phase, sets the value of “ssthresh” to half the size of
the current window, goes into the “slow-start” phase and retransmits the lost segment.

When an out-of-order segment arrives at a TCP receiver, the receiver sends a duplicate ACK for
the last segment that was received in order. If a TCP sender receives three such duplicate ACKs, it
infers a segment loss. As some segments have already been received, although out-of-order, there
is no need to re-entering the “slow-start” phase. Instead, the TCP sender enters the “fast retransmit
and fast recovery” phase. It retransmits the segment that appears to have been lost without waiting

for the retransmit timer. After this retransmission and until a non-duplicate ACK is received, “fast

3The “receiver’s advertised window” rate control is usually referred to as “flow control”, compared to “congestion
control” which is used to describe the function of “congestion window”.
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recovery” algorithm takes over. In this phase, the “ssthresh” is set to half the size of the current
congestion window, the window is subsequently halved and then increased by three segments size,
taking into account the three received segments (indicated by the three duplicate ACKs). As soon
as an ACK arrives acknowledging reception of new data, congestion window is reset to the value
of “ssthresh” and the TCP sender re-enters the congestion avoidance (AIMD) phase.

What has been described so far about TCP is referred to as “TCP dynamics”. Any other transport
protocol that implements these dynamics is referred to as “TCP-compatible”. “TCP-friendly”, on
the other hand, refers to a transport protocol that only converges on the same flow rate as TCP’s,
without implementing the TCP dynamics. It is called “friendly”, since it is assumed that it behaves
“fairly” in competition with TCP flows at the network bottlenecks. As the number of applications
using alternative transport protocols have increased significantly, some efforts have been made in
specifying “TCP-friendliness” [8, 9]. In specifying “TCP-friendliness”, developed models which
estimate the throughput that can be achieved by a TCP flow have been used; with the simplest

model estimating throughput based on MSS (Maximum Segment Size), RT T (Roundtrip time) and

3

p (constant probability of random packet loss) which, using the constant C = 4/ 3, will result in

TCP throughput estimated by %Tsf \% [10].

3 Explicit Congestion Notification (ECN)

Notification of congestion to end-systems has been traditionally done by routers dropping packets.
“Explicit Congestion Notification (ECN)”[11] has been proposed to add a separate mechanism
for routers to explicitly notify end-hosts of congestion without dropping packets and it works as
follows. ECN uses two bits in the IP packet header; the last two bits of “Type of Service” (TOS)
byte with the first six bits used for “Differentiated Services CodePoint (DSCP)”*. The two bits in
the IP header lead to four possible ECN codepoints, use of which is described as follows. Codepoint
“00” indicates “Not-ECN-Capable Transport (Not-ECT)” meaning the ECN is ignored and is used
neither by the end nodes nor by the routers in the path; this is the default value for the two bits.
Codepoints “01” and “10” both indicate “ECN-Capable Transport (ECT)” and are referred to as
“ECT(1)” and “ECT(0)”, respectively. Finally, codepoint “11” indicates “Congestion Experienced
(CE)”; therefore, “ECN-CE” marking replaces packet dropping in the router, if the router wants to

“IP version 6 uses a similar arrangement to IPv4 described in the text.
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indicate congestion. Apart from IP header, two bits in the TCP header are also reserved for ECN;
one flag for “Congestion Window Reduced (CWR)” and one for “ECN-Echo (ECE)” (explanation
of their use follows).

When an end-node is ECN-capable, it sets the ECN codepoint in the IP header of the packet to
either ECT(1) or ECT(0). A congested router which wants to send congestion notification sets the
ECN codepoint to CE, instead of dropping the packet which is the default treatment of Non-ECT
packets. Upon receipt of this CE marked packet by the TCP receiver, it sets the ECN-Echo flag
in the TCP header in the next packet that it sends back to the sender (e.g. in an ACK). Therefore,
as soon as the sender receives the ECN-Echo flagged packet, it will know about the congestion
and will react as if a packet has been dropped (the original congestion signal) by halving its send
window. The sender will also set the Congestion Window Reduced (CWR) flag in the TCP header
of the next outgoing packet to indicate that it has received and reacted to the congestion signal.

An aspect which we deliberately delayed to explain in the above paragraphs, is the fact that we
mentioned that ECN uses two codepoints, “ECT(1)” and “ECT(0)”, to signal one state: “ECN-
Capable Transport (ECT)”. This effectively means that in the basic ECN, only 3 codepoints carry
useful information; with one being unused. However, “(ECN)-nonce” [12] changes that, by putting
in use both “ECT(1)” and “ECT(0)” codepoints by adding another functionality: protecting against
accidental or deliberate concealment of ECN-CE marked (or dropped) packets from the TCP
sender. With “(ECN)-nonce”, TCP receivers have to report correctly whether or not the received
packets have been ECN-CE marked in the path. Without this mechanism, i.e. with basic ECN, re-
ceivers could lie about the real congestion in the path (by downplaying it) and fooling senders into
continuing to send with the same rate, thereby gaining an unfair advantage over other correctly-
behaving receivers. Apart from the two ECN codepoints, “(ECN)-nonce” reserves and uses a flag
in the TCP header. In what follows, we provide an overview of “(ECN)-nonce”.

The sender encodes a sequence of random one-bit nonces onto the codepoints ECT(1) and
ECT(0), i.e. ECT(0) represents a nonce bit of O and ECT(1) represents a nonce bit of 1. This
way, the sender can indicate ECN capability, all the while using this opportunity to encode its ran-
dom bits. We remind from ECN description above that a router who wants to signal congestion,
overwrites the two ECN bits with the ECN-CE codepoint. This means that at the receiver, the en-
coded random bit by the sender is lost, if the packet is ECN-CE marked. The receiver calculates a
sum of the values of the received nonce bits and returns the sum value to the sender using a TCP

header flag, the nonce sum (NS) bit. If packets arrive without being ECN-CE marked (or dropped),
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the sum value will match the value held at the sender, otherwise, the two sum values will differ
and the receiver has a very low chance of being able to repeatedly guess the correct sum values.
Consequently, the sender is able to verify whether or not the receiver reports correctly the reception
of ECN-CE marked (or dropped) packets?.

4 Active Queue Management - AQM

After having set the scene about congestion control and the issues at play, we introduce the promi-
nent Active Queue Management (AQM) schemes. Congestion avoidance schemes maintain the
network in a region of low delay and high throughput. Congestion avoidance can be approached
by focusing on end-to-end schemes, router-based schemes (i.e. AQM) or, ideally, combination of
both.

4.1 Random Early Detection - RED

Random Early Detection (RED) [13] implements the congestion avoidance mechanism by con-
trolling the average queue size. Compared to Drop-Tail, RED avoids global synchronization of
TCP connections decreasing their windows at the same time and, contrary to Drop-Tail, RED does
not have bias against bursty traffic. RED uses randomization to calculate the drop probability for
each arriving packet and drops the packet with this probability which is about proportional to the
corresponding connection’s bandwidth through the gateway.

RED uses two separate algorithms to accomplish its stated objectives: one algorithm to calculate
the average queue size and another algorithm to calculate packet drop (or marking) probability.
The principal parameter in the algorithm to calculate average queue size is w,, the queue weight,
which basically determines the size and duration of bursts that can be accepted at the gateway. w,

determines how closely “average queue size (avg)” follows the “current queue size”; a small w,

SWhile “(ECN)-nonce” certainly adds an interesting functionality to the ECN scheme, it has been mentioned in this
section for another reason. “Re-ECN”, an scheme presented in Section 5, redefines how ECN codepoints are
interpreted and used. The designers of “re-ECN” has not managed to accommodate “(ECN)-nonce” in the new
interpretation of the codepoints. At the same time, “(ECN)-nonce” is currently held at “Experimental” status, since
its final standardization renders implementation of “re-ECN” impossible. This has led to a fierce discussion within
the IETF between the proponents of each scheme, which we felt we have to mention, considering that we refer to
“re-ECN” on many occasions later on in the document.
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means that a short-term increase in the current queue size, due to a burst, will have little effect in
increasing the average queue size(avg).

After having calculated avg upon packet arrival, the second algorithm uses the value of avg
to calculate the drop probability and decide whether or not to drop the packet. In calculating
the drop probability, few parameters are at play: max;,, min;, and max, (queue size maximum
and minimum thresholds and maximum drop probability, respectively). If the calculated avg is
below the min,;, then the drop probability is zero. If avg is between min,, and max,, then a drop
probability is calculated which is between 0 and max,. If, however, avg is higher than max;;, then
the drop probability is 1. A later modification to RED to provide a less aggressive drop probability
function is the following: for avg value between max;;, and 2 * max;, (the “gentle region”), the drop
probability is linearly increased from max, to 1.

Final notes on RED include the ability of RED to measure queue size in bytes instead of packets.
Measuring in bytes entails modification of drop probability function and taking into account the ar-
riving packet size in relation to the maximum allowable packet size. This in turn implies that larger
packets have higher chances of being dropped than smaller packets (i.e. packets like ACKs are less
likely to be dropped). Part of the RED gateway configuration is setting values for max;;, and min,
which depends on the desired “average queue size(avg)”. Deciding on an optimal value for this
latter parameter, avg, to simultaneously maximize throughput and minimize delay is not a trivial

issue and depends on the traffic characteristics as well as on network’s physical characteristics.

4.2 RED with Preferential Dropping (RED-PD)

Short Round-Trip Time (RTT) TCP flows (i.e. high throughput TCP flows) and flows that fail to
use end-to-end congestion control are two categories of flows that unfairly take too much of the
available bandwidth at FIFO routers. To remedy this problem, “RED with Preferential Dropping
(RED-PD)” [14] has been proposed. In “max-min fairness”, flows are ordered according to their
demands, then flows with minimal demands are satisfied before sharing the remaining resource
(bandwidth at the router’s output interface) between high-demand flows. Implementing a full “max-
min fairness” scheme requires per-flow scheduling and keeping state for all flows traversing the
router; hence considered complex and near-impractical. RED-PD proposes a “partial flow state”
approach in which state is kept only for high-bandwidth flows. Therefore, RED-PD achieves “max-
min fairness” along with keeping the simplicity of FIFO queueing.
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Figure 1: Architecture of a RED-PD router

In RED-PD scheme, high-bandwidth flows are identified using RED’s packet drop history, which
is considered to be a reasonable sample of the incoming traffic [14]. RED-PD identifies flows with
bandwidths above a “target bandwidth”, monitors them and controls their bandwidth at a pre-filter
(see Figure 1) placed before the output queue by probabilistically dropping packets. The drop
probability, in the pre-filter, is calculated by the identification method and it is made sure that the
rate of each flow going to the output queue does not exceed the “target bandwidth”.

For identification of high-bandwidth flows, as mentioned before, a “target bandwidth” is used.
This “target bandwidth” is chosen as the rate (pkts/sec) of a reference TCP flow with a “target RTT
(R)” and the current drop probability p of the RED algorithm (see Figure 1, block in the middle).
This reference TCP flow has approximately an average rate of \/@ (pkts/sec) [14, 15]. In the de-

Rx
terministic model [15], a “TCP Congestion Epoch” has one packet drop and therefore has % packets

in total (counting the dropped packet and the successfully forwarded packets). Therefore, based on

V1.5 \1.5%p
Revp or Y— . We

can infer automatically the “Congestion Epoch Length (CL)”(in sec.) to be —R__ which indicate

Vv 1.5%p

the period in which at least one packet is dropped on average, if a flow sends at a rate higher than

the mentioned formula for TCP flow average rate, the rate of packet drops is p *
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V1.5
Rx\/p*

onds (with K being a small integer) and identifies a flow as “high-bandwidth” if it has K or more

RED-PD algorithm maintains packet drop history for K x« CongestionE pochLength(CL) sec-

drops during this period.

As has been clear in the previous paragraph, RED-PD designers have transformed setting a value
for “target bandwidth” to setting a value for “target RTT (R)”, as a RED-PD configuration decision.
In what follows, we discuss the significance of “target RTT (R)” as a configuration parameter.
Setting the “target RTT (R)” to a high value leads to more flows being monitored; hence more
state kept and nearing full “max-min fairness”. At the other side of the spectrum, choosing a small
value for “target RTT (R)” means RED-PD is having little impact at the router in the context of
flow rate regulation. If the goal is the control of only very short RTT TCP flows along with overly-
misbehaving users (very high-bandwidth flows with no end-to-end congestion control), then “target
RTT (R)” should be chosen as a small value accordingly.

“Preferential Dropping” is done in the pre-filter (see Figure 1, upper block), in which packets
from the monitored flows are dropped with a probability dependent on how much the flow rate has
exceeded the “target bandwidth”. As is clear from Figure 1, the unmonitored flows (the flows with
low or acceptable level of bandwidth) bypass the pre-filter and go directly to the output queue and
will be subjected to the normal RED algorithm. If the RED’s average queue size is low however,
meaning that there is low overall traffic demand, RED-PD stops dropping packets in the pre-filter,
therefore the whole RED-PD algorithm degrades to a simple RED mechanism.

In closing our notes regarding RED-PD, we emphasize the fact that, as the identification engine
does not run in the forwarding fast path, storage and processing of drop history have insignificant
overhead. This is due to simple processing and the maintained state which is a sparsely-populated
classifying data structure that is used to lookup the dropping probability (to be used in the pre-filter)

for any monitored flow.

4.3 Discussions and Comparisons

The main weakness of RED AQM scheme is that the average queue size is dependent on the con-
gestion level and initial parameters setting. Specifically, the average queue size is around minyy,
when max, has been set to a large value and/or the level of congestion is low. On the other hand,
the average queue size is around max;,, when max, has been set to a small value and/or the level

of congestion is high. This leads to a situation in which network operators are unable to estimate
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the queueing delays in advance. A closely related problem to this issue is the similar dependence
of throughput. Namely, RED leads to low throughput and high drop rate when average queue size
is around and above max;,, which is unavoidable at times due to unpredictable congestion levels.
Adaptive RED [16] (based on some related earlier works) makes minor changes to the basic RED
algorithm to remove its sensitivity to initial parameters setting; hence achieving a target average
queue length in a variety of traffic scenarios.

As discussed above, average queue size and overall performance of RED depend on how cor-
rectly parameters max, and w, have been chosen considering the expected congestion level. Adap-
tive RED basically auto-tunes max, dynamically based on current congestion level (by measuring
queue length) and leads to average queue size maintaining a value within a target range between
min, and max;,. Adaptive RED also sets a value for w, automatically based on the link speed.
The authors have conducted simulations to demonstrate the effectiveness of this design in which
automatic adaptation of max, indeed leads to a steady average queue size by tuning the relation-
ship between average queue size and packet dropping probability. Given that Adaptive RED sets
some parameters automatically, the only configuration left is the choice of target average queue
size which, as has been mentioned before, is a question of policy regarding the trade-off between
throughput and delay.

Apart from RED (and other RED-based algorithms), there are two other major AQM designs:
Proportional-Integral (PI) Controller [17] and Random Exponential Marking (REM) [18]. While
these designs have also shown solid performances compared to RED, they have nevertheless had
less traction and industry adoption (e.g. implementation in Cisco routers). Furthermore, these two
designs have not received yet the intense scrutiny in variety of simulation scenarios and actual
implementations as has been the case for RED. In what follows, we give a very brief overview of
PI controller and REM. Note that both PI and REM solely deal with TCP flows; their performance
in dealing with UDP flows (i.e. where flows are not responsive to congestion notification) is not
known.

The PI designers [17] have used classical control system techniques to develop AQM mecha-
nisms supporting TCP flows. The idea is inspired by, and tries to address, two reported limitations
of RED: 1) Tradeoff between stability and speed of response 2) Coupling of queue length and loss
probability which results in a flow, facing an overloaded system, to experience high delay as well
as high loss.

Proposing to decouple marking probability from queue size, an integral controller is used which

10
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attempts to keep the queue size around a reference value g,.r independent of the load level. It
has been suggested that the Proportional-Integral (PI) controller: 1) is relatively insensitive to load
level variations and attempts to keep the queue size to a set value g, 2) provides faster response
times and less oscillations 3) allows delay to be tuned with a single parameter, g, unlike RED, in
which delay is a function of current load and several parameters. 4) is capable of operating at both
high utilization and low delay, unlike RED, in which one can be achieved at the expense of losing
the other. In summary, the proportional term of the PI controller is responsible for the fast response
time and providing stability and its integral term is responsible for the steady-state regulation of
queue size around the reference value g,.r, even if there are load variations (i.e. variations in
number of TCP sessions and their RTT values).

Random Exponential Marking (REM) [18] is another AQM scheme which is built on the idea
that congestion measure (which tracks the traffic demand, i.e. number of TCP flows, etc.) should
be decoupled from performance measures (delay and loss). It is therefore capable of offering both
high utilization and low delay at the same time. Although the design process has been different,
REM and PI controller are equivalent schemes.

REM has two key features: “Match rate clear buffer” and “Sum prices”. “Match rate clear buffer”
refers to the fact that REM sends feedbacks to sources, and sources in turn adapt their sending rate,
to control the aggregate arrival rate to the router, which results in keeping the aggregate arrival
rate around the link capacity. This control happens while keeping the queue length around a target
value and is independent of the number of TCP flows. “Sum price” (“price” is REM’s congestion
measure) serves to provide user with a way to estimate the overall congestion in case there are
multiple congested links in the path.

The dropping probability is an exponentially-increasing function of the calculated “price” at each
output queue. This leads to the fact that as the packet moves along a path, an end-to-end dropping
probability can also be defined which will be an exponentially-increasing function of “sum” of all
the “prices” along the path which is the direct result of defining this “exponential” function. When a
source sees a particular drop rate, it can then infer (using the assumption of end-to-end exponential
drop probability) the end-to-end “Sum prices” or overall congestion along the path.

As mentioned, each output queue keeps a congestion measure, called “price”, which is used to
determine marking/dropping probability and gets updated based on the difference between arrival
rate and link capacity and the difference between current queue size and the set queue size target.

According to this notion of “price”, as the arrival load increases, the value of price increases and a

11
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stronger congestion signal is sent to the senders while the mean queue size is stabilized around the
set target.

The three major AQM schemes (Adaptive RED, PI and REM) have been the subjects of an empir-
ical study [19] for comparing their performances (with and without ECN support) with end-to-end
response time distribution of HTTP request/response exchanges being the primary performance
metric (web users perceived performance). In summarizing the results of the empirical study, we
start by pointing out that Adaptive RED shows its best performance in byte-mode and without ECN.
With this configuration, Adaptive RED outperforms REM, PI and Drop-Tail at 90% load (all with
or without ECN, operating in their reccommended byte-mode). However, at 98% load, REM and PI
with ECN support outperform ARED (byte-mode without ECN). This leads to the conclusion that
Adaptive RED (byte-mode) could be the right choice for AQM if the operator wishes to avoid ECN
implementation and have high link capacity utilization (near-saturation level).

5 Fairness between Economic Entities

Although we advocate the view of providing fairness between users instead of flows, up to this point
in this report, the dominant view of providing fairness between flows as a goal has been present in
various contexts, faithfully representing the views of the designers of those schemes. This has been
intentional, as we have concentrated our arguments in favor of providing fairness “between users”
rather than “between flows” in this section.

Striving to achieve “flow rate fairness” has been present in almost all queueing and congestion
control mechanisms. This presence has taken the form of either requiring that all applications use
TCP or otherwise be TCP-friendly on the client side®, or implementing queueing schemes such as
Fair Queueing [20], Weighted Fair Queueing [21] and Core-Stateless Fair Queueing [22], or the
previously-discussed AQM schemes, on the router side. However, this “obvious and natural” goal
can hardly be any more irrelevant in today’s Internet. The idea of trying to provide “fairness” is
meaningful when considered in the context of relationships between “real people”, “businesses”,
etc. (hereafter referred to as “economic entities” or “users”). At the early days of Internet, trying
to provide “flow rate fairness” largely meant achieving fairness between the economic entities as

well. The nature of applications run in the Internet, in terms of number and duration of flows, was

%Note that we still consider congestion avoidance aspect of TCP and TCP-friendly protocols a desirable feature for
the simple reason that it tries to avoid congestion. However, it is far from “fair” to users in practice.

12
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far more harmonious than what is seen in today’s Internet. This meant that most queueing and
congestion control mechanisms took care of the issue of providing fairness between “economic
entities”, just by trying to provide fairness between “flow rates”. This fundamental misconception
has gone largely unnoticed, until heavily exploited by the P2P applications. P2P applications are
known to: 1) create numerous flows and 2) use them in parallel for long periods of time. As a
result, P2P applications have fully exploited the two loopholes present in the idea that “flow rate
fairness” naturally leads to “fairness between users”.

Under current queueing and congestion avoidance/control schemes, which try to achieve “user
fairness” through “flow rate fairness”, P2P applications gain a “grossly-unfair” advantage over
other more traditional Internet applications like HTTP. This is due to the fact that those schemes try
to provide “fairness” by allocating equal bandwidth to competing flows in every bottleneck in the
network. This type of allocation is myopic: it makes decision based on the instantaneous status of
the queue and does not take into account the (sufficiently long) history (i.e. how long the competing
flows have been active in the past). Furthermore, this type of allocation does not take into account
the number of flows that each application has created’.

Recently, Briscoe [23-27], a researcher in BT/UCL, has extensively discussed the issues men-
tioned above and has designed a scheme called “re-ECN”’[28] to achieve what he refers to as “cost
fairness”. “Cost fairness” is built on the notion of putting price on the congestion that users cause
in the network and its implementation entails minor changes to TCP/IP along with addition of other
policing/dropping devices to the network. We now concentrate on “re-ECN”, Briscoe’s solution to

the Internet’s congestion problem.

5.1 Re-ECN

The “re-ECN” scheme [28] is a concrete proposal as to how price can be put on the congestion that
users cause, achieving “cost fairness” as a result®. As explained in Section 3, “ECN” will enable
to see the path congestion in the receiver side. The receiver, in turn, informs the sender, through

a TCP flag, about the experienced congestion on the path. Finally, the sender “can” take action to

’Some of the AQM mechanisms try to keep a certain amount of history, mitigating the myopic aspect. However, they
neglect to, or cannot, keep track of number of flows per application.

8The designers of “re-ECN” believe that this scheme effectively closes the loopholes exploited by the P2P traffic,
so “fair” use of the network by all traffic types including the P2P traffic follows naturally after deployment of
“re-ECN”.
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correct the situation by reducing its rate. The obvious problem is that the network is at the mercy
of the sender and cannot force the sender to reduce its rate; only an egress dropper, just before
reaching the receiver, can stop the rogue flow by monitoring the ECN-CE marks and consequent
sender rate response to the congestion indication, but the congestion damage is already done in the
network”. “Re-ECN” corrects this situation by exposing the congestion information at the sender’s
side, so an ingress policer can take action before any damage is done in the network. Furthermore,
“re-ECN” is designed to be able to control single datagram flows as well, as it can operate with just
sender support; the scheme works best though if both sender and receiver have re-ECN-capable
transports. Hereafter, we explain the mechanics of “re-ECN”.

“Re-ECN” requires the last undefined bit (RE flag) in the [Pv4 header. RE flag, in combination
with the 2-bit ECN field, create eight codepoints'®. Routers along the path do not need to be
re-ECN-capable; ECN-capability is assumed to be present though. The idea is that as the flow’s
packets traverse the network, they are ECN-CE-marked in ECN-capable routers, if the routers
experience congestion. The receiver then “counts” the number of received marks and reports back
this number (CE-no.) to the sender using TCP. The sender then marks “CE-no.” number of its
outgoing packets by setting the RE flag of their IP headers, effectively indicating to the network
(right at the ingress point) the amount of the congestion expected downstream.

When a sender first starts to send packets, it does not know the congestion that will be experi-
enced. Therefore, it uses the “feedback not established” codepoint. The network however, treats
this initial phase as if the sender is declaring downstream congestion, to protect against misbehav-
ing senders. Once the feedback is established from the receiver, the sender sets the RE flag to 1 in
the next packets that it sends. If the receiver reports back to the sender that some number of packets
have been received CE-marked, the sender sets the RE flag to 0 in an equivalent number of packets
that is going to send. Hereafter, we use the term “blanking” to refer to process of setting RE flag to
0. Likewise, “RE blanking fraction” refers to the fraction of octets in a stream of packets in which
the RE flag have been “blanked”, or set to 0.

Figure 2 (adapted from [28]) depicts how re-ECN allows routers along the path to be able to
measure not only the upstream congestion (which can be achieved by only ECN), but also estimated

? Another scenario would be that the receiver does not report at all the received congestion marks to the sender, hoping
to maximize its reception rate.

190ne of re-ECN’s codepoints is an alternative use of the codepoint ECT(1) used to implement ECN-nonce; see the
footnote in Section 3
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Figure 2: Re-ECN: An approximative 2-queue example

downstream congestion (which is made possible by re-ECN). In the case of Figure 2, receiver
notices that about 3% of packets have been congestion (CE) marked and reports this to the sender.
The sender then “blanks” 3% of its outgoing packets to match the 3% CE fraction seen at the
receiver. Note that the RE flag is not changed in the network; it is only set by the sender. This
effectively means that at any observation point in the path, it is possible to measure the upstream
congestion (by measuring the fraction of packets that have been CE marked), the end-to-end path
congestion (by measuring the fraction of packets that have been “blanked” by the sender) and the
downstream congestion (by subtracting upstream congestion from whole path congestion).

We introduce few other terms: “positive packet” or “negative packet”, meaning a “blanked
packet” or “CE marked packet”, respectively. Equivalently, “positive flow” means a flow that
carry more positive packets than negative ones on average, or put another way, it has a positive
downstream congestion metric (in the same manner, a “negative flow” is defined.). Note that the
“worth” of each “positive packet”, for example, depends on the “size” of the packet, meaning that
a large packet contributes more to the “positiveness” of the flow. As mentioned, amount of con-
gestion can now be measured in every point in the path with re-ECN. Therefore, two key elements,

“ingress policer” and “egress dropper” are deployed to make sure that flows do not go consistently
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negative'!. These two pressures ensure that the receiver honestly reports to the sender the true level
of congestion in the path and that the sender reacts responsibly to adapt to this level of congestion.
Note that “ingress policer”, like any other observation point in the path, is aware of level of conges-
tion that the sender is causing in the whole path; whether or not the policer rate-controls the sender

depends on the type of contract between the sender and the access network operator.

1A flow that is consistently negative, understates the congestion experienced in the network. This behavior is sanc-
tioned by the egress dropper. If a flow is consistently positive, it overstates the congestion experienced, which is
only against end-nodes’ interests; leading to the sender using its “congestion volume quota” quicker.

16



6 UARA

6 UARA

[This section is added to this Tech Report in 2011 to mention a paper due to its relevancy]

Masood Khosroshahy (2011), “UARA in edge routers: An effective approach to user fairness and
traffic shaping”, International Journal of Communication Systems (Wiley), doi: 10.1002/dac.1262

Abstract:

The ever-increasing share of the peer-to-peer (P2P) traffic flowing in the Internet has unleashed
new challenges to the quality of service provisioning. Striving to accommodate the rise of P2P traf-
fic or to curb its growth has led to many schemes being proposed: P2P caches, P2P filters, ALTO
mechanisms and re-ECN. In this paper, we propose a scheme named “UARA:User/Application-
aware RED-based AQM” which has a better perspective on the problem: UARA is proposed to be
implemented at the edge routers providing real-time near-end-user traffic shaping and congestion
avoidance. UARA closes the loopholes exploited by the P2P traffic by bringing under control the
P2P users who open and use numerous simultaneous connections. In congestion times, UARA
monitors the flows of each user and caps the bandwidth used by “power users” which leads to the
fair usage of network resources. While doing so, UARA also prioritizes the real-time traffic of
each user, further enhancing the average user quality of experience (QoE). UARA hence central-
izes three important functionalities at the edge routers: (1) congestion avoidance; (2) providing user
fairness; (3) prioritizing real-time traffic. The simulation results indicate that average user QoE is

significantly improved in congestion times with UARA at the edge routers.

Uara resources available from: http://www.masoodkh.com/uara/
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