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Abstract 
It’s been some time now that expressions like “Voice over IP”, “Fax over IP” 
and the likes are heard extensively in the telecommunications industry. The 
idea is utilizing data networks to deliver telecommunications services which 
are currently provided by the PSTN. The incentive is pretty straightforward: 
cutting costs and yet being able to provide the previous services, not to 
mention the added capabilities to deliver a multitude of other services, 
hardly imagined feasible with the PSTN.  

When considering the implementation of the aforementioned objective, 
one faces a lot of difficulties. Simply put, the current data networks, e.g. the 
Internet, have not been designed with telecommunications services in mind. 
They have been optimized to carry data which is bursty in nature. This 
design is in obvious contradiction to the requirements of the 
telecommunications services, one of which is fax. In this thesis, Fax over 
Internet protocol (FoIP) is being considered which has two possible 
approaches to be accomplished: Real-time and Store-and-Forward. Real-time 
approach is the ultimate goal since it is the real-time faxing which makes the 
transition from the PSTN to the Internet-based architecture smooth.     

Signaling comprises initiation, management and tear-down of sessions 
examples of which are fax, voice, video and the like. Currently there are two 
protocols that can provide an end-to-end solution: H.323 and Session 
Initiation Protocol (SIP). SIP is the protocol of choice among other standards 
in the voice and fax transmission domains due to its numerous advantages.  

In this thesis, we intend to closely examine some aspects of the new 
architecture and its implementation feasibility. Different components of the 
real-time Fax over IP architecture are analyzed and we pay a particular 
attention to the signaling part. Utilization of SIP and SDP, a companion 
protocol to SIP for capabilities exchange, in fax transmission is studied. 
What we intend to do is exploring whether fax parameters details can be 
negotiated using SIP/SDP. Session establishment, starting a sample file 
transfer, which can act on behalf of real-time fax transfer, and the 
subsequent session tear-down, after file transfer is complete, are 
demonstrated. This simulation scenario and its results exhibit the potential 
success of the proposed SIP/SDP combination for real-time fax session 
establishment, management and tear-down. 

Another important analysis carried out in this thesis is the utilization 
of SIP contact header for reducing the load on proxy servers which is a 
highly desirable feature.  
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Chapter 1 
Introduction 
 
 
 
 
 
 
 

1.1 Introduction 

“Voice over IP”, “Fax over IP” and the likes are gradually becoming the next 
big cutting-edge technologies in the telecommunications industry [1], [2]. 
These are meant to replace the traditional method of delivery of 
telecommunications services by Public Switched Telephone Network (PSTN) 
through utilization of data networks e.g. the Internet. By doing so, both the 
telecommunication service providers and the users can save fortunes, not to 
mention the newly-presented capabilities to deliver a multitude of other 
services. Venturing into the actual implementation has proved to be a hard-
to-overcome challenge and a plethora of standards are still being considered 
to make the new architecture a reality. 

1.2 Existing Problem 

When considering the implementation of the aforementioned objective, one 
faces a lot of difficulties. Simply put, the current data networks, e.g. the 
Internet, have not been designed with telecommunications services in mind. 
They have been optimized to carry data which is bursty in nature. With 
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bursty, we mean a discrete series of packets of data which travel through the 
net from a source to a destination with frequent idle times in transmission. It 
is not strictly continuous and generally the users don’t mind the jitter and 
extended delays of the data packets. These are in obvious contradiction to 
the requirements of the telecommunications services. Specifically, they 
stipulate the existence of a network infrastructure which is either 
connection-oriented in nature or at least can resemble its behaviors and 
therefore is able to guarantee a stream of data free of any kind of 
interruption.  

One of these telecommunication services is Fax. Fax over Internet 
protocol (FoIP) is being considered in this thesis but needless to say that 
most of the technologies are shared with Voice over IP (VoIP). There are two 
possible approaches to accomplish faxing over the internet protocol: Real-
time and Store-and-Forward. Store-and-Forward or non-real-time usually 
uses E-mail capabilities to transfer fax between the end-points. In real-time 
approach, as the name suggests, fax is transferred in real-time manner and 
without delay; like the way we currently send fax using the PSTN. Real-time 
approach is the ultimate goal since it is the real-time faxing which makes the 
transition from the PSTN to the Internet-based architecture smooth.     

Signaling as one can imagine is the most important part of any session 
initiation, management and tear-down whether it is fax, voice, video or the 
like. Currently there are two protocols that can provide an end-to-end 
solution: H.323 and Session Initiation Protocol (SIP). H.323 is a binary 
protocol which consists of a complex suite of protocols that reuse many older 
services and methods borrowed from Integrated Services Digital Network 
(ISDN). Being binary, among other short-comings of H.323 in comparison 
with SIP which is text-based, makes H.323 a platform dependant protocol. 
SIP, in addition to other advantages which are further discussed in the 
coming chapters, is capable of supporting user mobility by proxying and 
redirecting requests to the user’s current location. Hence, SIP is the protocol 
of choice among other standards in the voice and fax transmission domains. 
But SIP has yet to prove its capabilities to be chosen as the ultimate solution 
for providing fax services in the Internet.  

1.3 Thesis Objectives 

In this thesis, we intend to explore the issues related to Fax over IP in their 
entirety and closely examine some aspects of the new architecture and its 
implementation feasibility. Different components of the real-time Fax over IP 
architecture are analyzed and we pay a particular attention to the signaling 
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part. Utilizing SIP in fax transmission is studied and feasibility of 
implementing Fax over IP architectures using this protocol is discussed. 
Based on the reasons briefly mentioned earlier, SIP is better suited to the 
task in comparison with H.323. More comparisons between the two protocols 
will be presented in the coming chapters. Computer simulations are utilized 
for the analysis; specifically, a simplified version of the SIP protocol and 
network components are developed to study whether fax parameters details 
can be negotiated between the end-points. These simulation scenarios and 
their results exhibit the potential success of the proposed implementation 
approach. 

1.4 Thesis Organization  

This thesis comprises 8 chapters. Chapters 2 and 3 are devoted to 
introducing the fundamental concepts behind every network. Readers with 
sufficient background in network technology can readily bypass these 
chapters and move on to Chapter 4. Specifically, in Chapter 2 we start the 
whole discussion by introducing the switching modes and networking modes 
which arguably is the main distinction between the PSTN and the Internet. 
We move on to discuss the PSTN and its components in the last section of 
Chapter 2. Data networks, because of their prime importance in this thesis, 
are treated in a chapter of their own: Chapter 3. In Chapter 3, discussion 
starts by introducing data communications basics. Two types of data 
networks, i.e. local area network (LAN) and wide area network (WAN), are 
briefly discussed next. The chapter is concluded with a thorough treatment 
of the Internet protocol itself and its transport layer protocols: Transmission 
Control Protocol (TCP) and User Datagram Protocol (UDP). 

In Chapter 4 we start treating the issues directly involved in this 
thesis: issues related to V/FoIP. In this chapter, first some IP telephony 
fundamentals are presented and then issues related to call signaling are 
treated and the many available protocols and how they lend themselves to 
the job are explained. In the next section, Fax over IP is treated by first 
introducing the conventional Group 3 T.30 fax transmission, then T.37, ITU-
T transfer of facsimile data via store-and-forward on the Internet 
recommendation, and T.38, ITU-T real-time Group 3 fax communication over 
IP networks recommendation, are explained. Various approaches to provide 
QoS in IP networks are discussed next. At the end of the chapter, a 
discussion regarding the IP telephony trends and economics is presented. 

Chapter 5 is devoted entirely to presenting and exploring the Session 
Initiation Protocol (SIP): The protocol of choice in this thesis. In Chapter 5, 
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after an introduction, SIP clients and servers, request and response 
messages and the protocol headers are introduced. Session Description 
Protocol (SDP), a companion protocol to SIP, is introduced in Section 5. A 
thorough treatment of SIP programming is presented afterwards in Section 
6. We conclude the chapter with a discussion covering T.38 and SIP 
utilization for FoIP. 

In Chapters 6 and 7, a detailed account of computer simulations is 
presented. In Chapter 6, J-Sim simulator, a powerful Java-based network 
simulation tool is introduced. The source code of this simulator is in the 
public domain, so we take a close look at inner workings of different 
components of it, how it operates and how new modules can be developed 
and added to its set of supported protocols. We also examine the simulation 
scenario creation method in the simulator. 

In Chapter 7, as a major implementation part of this thesis, the 
development and testing of the SIP protocol is explained. SIP network 
architecture components i.e. SIP user agents and proxy servers, among other 
components, have been developed and added to the simulator. The SIP 
components are put together to build a network simulation scenario to 
further analyze the behavior of them. As is explained in Chapter 6, building 
simulation scenario, node initialization and configuration, addition of 
measurement tools to track packets in a real-time manner and performing 
measurements of parameters such as throughput, packet sequence numbers 
and congestion are made possible with the tool command language (TCL) 
scripting language. A detailed analysis of the specific chosen simulation 
scenario is given and measurement results are discussed. Furthermore, the 
complete source codes of developed Java-based SIP components are provided 
in the appendix. 

In Chapter 8, we wrap up the whole discussion and summarize the 
main points from concept-presenting chapters, i.e. Chapter 2 to 5 and 
chapters devoted to computer simulations, i.e. Chapters 6 and 7. Some 
important analysis results and future work directions are also presented. 
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Chapter 2 
Fundamentals 
 
 
 
 
 
 
 

2.1 Introduction 

In this chapter, we introduce and discuss fundamental concepts related to 
this thesis. We first start by inspecting different switching and networking 
modes which paves the way for better understanding the differences between 
the Public Switched Telephone Network (PSTN) and the Internet and then 
move forward to study PSTN more closely in the third section. Then the 
chapter ends with introducing materials for further studying. Data networks 
will be examined thoroughly in a chapter of their own, Chapter 3, due their 
prime importance in this thesis. Having built the necessary knowledge base 
in Chapters 2 and 3, issues specific to V/FoIP networks will be introduced 
and examined in Chapter 4. 

2.1.1 The PSTN versus the Internet 

In one very important fashion, the PSTN and the public Internet are the 
same thing: they both exist on the same physical infrastructure. There would 
be no Internet without the PSTN. The communications links, or backbones, 
that ISPs run on are delivered over the PSTN, and the access lines for entry 
into the Internet are all subscriber lines that are part of the PSTN. But what 
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differentiates the PSTN and the Internet is the equipment that's attached to 
each network, its use, and how it formats the information it carries. 

PSTN Characteristics 

The PSTN basically includes telephones, fax machines, and circuit switches 
that set up continuous but temporary connections. In a PSTN environment, 
the circuit is established between two subscribers and kept open for the 
duration of the call, including periods of silence. This provides guaranteed 
QoS and minimal latencies, and it means that the PSTN is optimized for 
voice and other real-time applications. It also means that the PSTN uses 
bandwidth inefficiently, making services more expensive. But we are 
constantly finding ourselves able to release more bandwidth and derive more 
channels over that bandwidth. 

Internet Characteristics 

The Internet basically includes clients, which are the user interface and the 
input/output device for information; the servers, which are the centralized 
repositories of knowledge that you are seeking; and the packet switches, 
which route and relay the packets of information between the clients and 
servers. Whereas the PSTN connects together two subscribers, the Internet 
connects together networks. As on the PSTN, messages on the Internet are 
routed to specific end devices. These messages take various forms, such as e-
mail, instant messaging, and real-time audio/video communications. Unlike 
the PSTN, however, the Internet breaks down the messages into packets of 
data, which contain the routing information, which will then lead them to 
their destination. Individual packets may take different routes, but they'll be 
reassembled in the proper order at the destination. This system is optimal for 
the most efficient use of transmission facilities, particularly when you're 
supporting bursty traffic that involves long periods of silence. In turn, this 
results in less expensive services. However, the tradeoff is that you get only 
best-effort QoS. Significant progress is being made on introducing QoS to the 
Internet though, and this will change a great deal in the coming years. 

Converging Networks: The Next Generation 

The decreasing cost of bandwidth, combined with the availability of low-cost 
and powerful chip technology, favorably highlights the economies of 
statistical multiplexing and packet switching, as long as latencies and loss 
can be controlled. From that standpoint, next-generation networks embody 
two fundamental concepts. First, a next-generation network is a high-speed 
packet- or cell-based network that's capable of transporting and routing a 
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multitude of services, including voice, data, video, and multimedia while 
supporting QoS. Second, a next-generation network is a common platform for 
applications and services that the customer can access across the entire 
network as well as outside the network. 

Networks are evolving so that they can address the growing demand 
for QoS. The two different infrastructures—circuit switching and packet 
switching—are not trying to replace each other. Instead, they are converging. 
This convergence is required between the existing legacy environment (the 
circuit-switched network) and the new and unique IP marketplace (the 
packet-switched network). To address this convergence, a number of devices 
have emerged that have a number of names, including Voice over IP 
gateways, media gateways, next-generation switches, and softswitches. 
These new devices in essence allow interoperability to exist seamlessly 
between the PSTN and packet-switched networks, whether IP or ATM or 
MPLS. These issues will be explored more in the coming sections. 

2.2 Switching Modes and Networking Modes 

This section discusses the key definitions and characteristics that are 
associated with the processes involved in establishing communications 
channels. It covers networking modes and switching modes. Details of circuit 
switching and its particular applications are discussed as well. This section 
also looks at packet switching, what its potential prospects are, and what 
challenges it faces. The section ends with a quick comparison between the 
public switched telephone network (PSTN) and the Internet. 

2.2.1 Establishing Connections: Switching Modes and Networking Modes 

For messages to travel across a network, a transmission path must be 
established to either switch or route the messages to their final destinations. 
Therefore, network providers need a mechanism that allows them to deliver 
the proper connections when and where a customer requests them. The 
networking techniques that evolved over time to handle the when and where 
came about because traditionally, relatively few high-capacity backbone 
cables existed. Those few backbone cables had to be manipulated to meet 
the needs of many individual customers, all of whom had varied bandwidth 
needs. Two networking techniques arose: connection oriented and 
connectionless. 

Switching modes-There are also two switching modes: circuit 
switching and packet switching. Both of these switching modes offer forms of 
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bandwidth on demand. The following sections describe networking modes 
and switching modes in detail. 

Table 2.1 Relationship between different types of switching [3]. 

Connection-Orientated Connectionless 

Circuit Switched 
Packet Switched 

    Cell Switching                           Message Switching 

 Virtual Circuit Datagram Switching 

2.2.2 Networking Modes 

When a network is being evaluated, concentration is on circuit switching 
versus packet switching. But it's also very important to consider the 
networking mode, which can be either connection oriented or connectionless. 

Connection-Oriented Networking 

As time-sensitive applications become more important, connection-oriented 
networks are becoming increasingly desirable. In a connection-oriented 
network, the connection setup is performed before information transfer 
occurs. Information about the connections in the networks helps to provide 
service guarantees and makes it possible to most efficiently use network 
bandwidth by switching transmissions to appropriate connections as the 
connections are set up. Putting it in another way; after the path is 
determined, all the subsequent information follows the same path to the 
destination. In a connection-oriented network, there can be some initial 
delay while the connection is being set up; but because the path is 
predetermined, there is no delay at intermediate nodes in this type of 
network after the connection is set up. Connection-oriented networks can 
actually operate in either switching mode: They can be either circuit 
switched or packet switched. Connection-oriented circuit-switched networks 
include the PSTN, SDH/SONET, and DWDM networks. Connection-oriented 
packet-switched networks include X.25, Frame Relay, and ATM networks. 

Connectionless Networking 

In a connectionless network, no explicit connection setup is performed 
before data is transmitted. Instead, each data packet is routed to its 
destination based on information contained in the header. In other words, 
each packet is individually addressed and individually routed. In a 
connectionless network, the delay in the overall transit time is increased 
because each packet has to be individually routed at each intermediate 
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node. Applications that are time sensitive would suffer on a connectionless 
network because the path is not guaranteed, and therefore it is impossible 
to calculate the potential delays or latencies that might be encountered. 

Connectionless networks imply the use of packet switches, so only 
packet-switched networks are connectionless. An example of a 
connectionless packet-switched network is the public Internet. It's a virtual 
network that consists of more than 150,000 separate subnetworks and 
some 10,000 Internet service providers (ISPs), so being able to guarantee 
performance is nearly impossible at this time. One solution is to use private 
internets which achieve cost-efficiencies but, because they are private, 
provide the ability to control their performance and thereby serve business-
class services. 

2.2.3 Switching Modes 

Switched technologies came about because of the high cost and inflexibility 
characteristic of early dedicated communications architectures. Switching 
is the process of physically moving bits through a network node, from an 
input port to an output port. Switching elements are specialized computers 
that are used to connect two or more transmission lines. The switching 
process is based on information that's gathered through a routing process. A 
switching element might consult a table to determine, based on number 
dialed, the most cost-effective trunk over which to forward a call. This 
switching process is relatively straightforward compared to the type of path 
determination that IP routers in the Internet might use, which can be very 
complex. 

Circuit Switching 

Circuit switching has been the basis of voice networks worldwide for many 
years. One of the key attributes of a circuit-switched connection is that it is 
a reserved network resource for the full duration of a conversation. But when 
that conversation is over, the connection is released. When a customer 
wants to place a call, he picks up the handset, which notifies the switch of 
his desire to do so, and the switch responds by sending a dial tone to the 
phone. The caller then sends the destination address to the switch (the 
telephone number), which proceeds to establish the call. As soon as the 
other end goes off-hook, the call is established. A circuit-switched 
environment requires that an end-to-end circuit be set up before a call can 
begin. A fixed share of network resources is reserved for the call, and no 
other call can use those resources until the original connection is closed. As  
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Figure 2.1 A Circuit-switched call [4].  
Trunk that stays in place                      -------------   
Connection set up when call is placed . . . . . . . . .  

Figure 2.1 illustrates, one can trace the path from one end of the call to the 
other end; that path and the capacity provisioned on it would not vary for 
the full duration of the call. Circuit switching offers the benefits of low  
latency and minimal delays because the routing calculation on the path is 
made only once, at the beginning of the call, and there are no more delays 
incurred subsequently in calculating the next hop that should be taken. 
Traditionally, this was sometimes seen as a disadvantage because it meant 
that the circuits might not be used as efficiently as possible. Around half of 
most voice calls is silence. Most people breathe and occasionally pause in 
their speech. So, when voice communications are conducted over a circuit 
that's being continuously held, and half the time nothing is being 
transmitted, the circuit is not being used very efficiently. But this is an issue 
that is important when bandwidth is constrained which does not apply to 
today’s networks. Hence, the low latencies or delays that circuit switching 
guarantees are more important than its potential drawbacks in bandwidth 
efficiency. Circuit switching has been optimized for real-time voice traffic for 
which Quality of Service (QoS) is needed. Circuit switching has experienced 
a major problem in recent years as Internet access with its Web surfing has 
grown popular. Because call resources are dedicated, the use of circuit-
switched facilities for modem access to the Web has resulted in the 
switches becoming severely overtaxed by the long call-hold times that 
characterize most Web sessions. 

Packet Switching  

Whereas circuit switching was invented to facilitate voice telephony, packet 
switching has its origin in data communications. Packet switching was 
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developed specifically as a solution for a traffic stream that's described as 
being bursty in nature, and bursty implies that you have long connect times 
but low data volumes. Therefore, circuit-switched links are not used 
efficiently: The connection would be established and held for a long period of 
time, with only little data passed. Packet switching was developed to increase 
the efficiencies associated with bursty transmission. Packet switching 
involves the multiplexing of multiple packets over a kind of circuit (an end-
to-end logical connection that creates a complete path across the network 
from source to destination node). Packet networks combine the packet 
streams from multiple users onto a single facility, thus using a higher 
percentage of the available bandwidth. Control protocols manage the 
independent data streams to ensure that each user data component 
maintains its integrity. In some cases, this technique is called virtual 
circuit service; the name stems from the fact that the service is so good in 
these networks that users feel as if they have their own dedicated 
transmission channel, in spite of the fact that the channel is shared among 
a collection of users. There are two special types of packet switched 
systems. The first is message switching where the entire message forms a 
packet. Message switched systems are often referred to as store and 
forward systems. Message switching avoids splitting the information to be 
transmitted into smaller packets, and the consequent reassembly at the 
receiver. The second special type of packet switching is cell switching. In 
a cell switching system, all the packets, known as cells, have a fixed 
length. This common format reduces the amount of work the network 
nodes have to perform on the packet, keeps complexity low and speeds 
high. ATM uses cell switching with a 48 byte information field and 5 bytes 
of header. To keep the processing and header overheads small, cell 
switching systems use virtual circuits so that the path through each 
router is set up in advance. Information is divided into packets that 
contain two very important messages: the destination address and the 
sequence number. The original forms of packet switching (developed in the 
late 1960s and early 1970s) were connectionless infrastructures. In a 
connectionless environment, each packet is routed individually, and the 
packets might not all take the same path to the destination point, and 
hence they may arrive out of sequence. 

Therefore, the sequence number is very important; the terminating 
point needs it to be able to reassemble the message in its proper order. 
Figure 2.2 illustrates a packet-switched network that uses virtual circuits. 
You can see that packets are queued up at the various nodes, based on 
availability of the virtual circuits, and that this queuing can impose delays. 
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Figure 2.2 A Packet-switched network [4]. 

The first generation of packet-switched networks could support only data; it 
could not support voice or video at all because there was so much delay 
associated with those networks. As packet-switched environments are 
evolving, some techniques are being developed to be able to separate and 
prioritize those traffic types. 

2.2.4 Connectionless Versus Connection-Oriented Packet-Switched 
Networks 

Packet networks provide two forms of service: connectionless service, where 
the switches do not perceive a relationship between packets that derive 
from the same source, and connection-oriented service, where they do. 

Connectionless Packet-Switched Networks 

Connectionless networks make no guarantees of delivery or arrival sequence. 
They are often called best effort or spray-and-pray networks because 
although they make every effort to deliver the packets to the destination, 
they do not guarantee the delivery. That is the responsibility of a higher-
layer protocol. For example, IP depends on TCP for guaranteed delivery of 
transmitted packets if such guarantees are required. A connectionless 
environment worries about getting a packet one step closer to the 
destination. It doesn't worry about having an end-to-end view of the path 
over which the message will flow; this is the fundamental difference between 
connection-oriented and connectionless environments, and, hence, between 
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infrastructures such as the Internet and the PSTN. Examples of 
connectionless packet-switched networks include the public Internet, private 
IP backbones or networks, Internet-based VPNs, and LANs. Again, each 
packet (referred to as a datagram transmission) is an independent unit that 
contains the source and destination address, which increases the overhead. 
That's one of the issues with connectionless packet-switched networks: If we 
have to address each packet, then the overall percentage of control 
information relevant to the actual data being transported rises. 

Each router performs a path calculation function independently, and 
each relies on its own type of routing protocols (for example, Open Shortest 
Path First [OSPF], Intermediate System to Intermediate System [IS-IS], or 
Border Gateway Protocol [BGP]). Each router calculates the appropriate next 
hop for each destination, which is generally based on the smallest number of 
hops. Packets are forwarded, then, on a hop-by-hop basis rather than as 
part of an end-to-end connection. Each packet must be individually routed, 
which increases delays, and the more hops, the greater the delay. Therefore, 
connectionless environments provide less control over ensuring QoS because 
of unknown latencies, unknown retransmissions, and unknown sequences 
in which the packets will arrive. 

Connection-oriented packet-switched Networks  

The connection-oriented packet-switched environment is something like a 
telephone network, in which a call setup is performed end-to-end. X.25, 
Frame Relay, ATM, and Multiprotocol Label Switching (MPLS) are all 
connection-oriented techniques. In connection-oriented networks, there is a 
multistage process that must be adhered to before information is 
transmitted across the network. In stage one, a call setup packet is sent into 
the network. This initial packet contains the full address of the intended 
recipient of the message. Upon arrival at the first switch, the packet is 
examined, the address is read, and a route (outgoing port) is selected based 
upon known information about the network and the intended destination. 
The switch then makes an entry into its routing table indicating which port 
the packet arrived on and which one it went out through. The packet 
continues across the network, causing table entries to be written at each 
switch, and thus places a trail across the network. Once the trail has been 
laid down, the remaining packets can make their way across the network, 
following the table entries left on switches that they encounter along the 
way. As a result, the packets that follow the setup packet do not require a 
full address. All they need is a short virtual circuit identifier; the switches do 
the rest (see Figure 2.3). With connection-oriented networks, one does not 
need to route each individual packet. Instead, each packet is marked as 
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belonging to some specific flow that identifies which virtual circuit it belongs 
to. No repeated per-packet computation is required; consequently, 
connection-oriented networks reduce latencies, or delays. In the connection-
oriented environment, the entry node contains the routing table, where the 
path is calculated and determined, and all packets follow that same path on 
to the destination node, thereby offering a better guarantee of service. 

 

Figure 2.3 A connection-oriented network [4]. 

2.2.5 Comparing Circuit Switching and Packet Switching 

Circuit switching is superior to packet switching in terms of eliminating 
queuing delays, which results in completely predictable latency and jitter 
in the backbone. Given the trend toward real-time visual and sensory 
communication streams, this seems to be the most important 
characteristic for us to strive toward. 

Table 2.2 Circuit Switching Versus Packet Switching. 

Characteristics Circuit Switching Packet Switching 
Origin Voice Telephony Data Networking 
Connectionless or Connection 
oriented 

Connection oriented Both 

Key Applications Real-time Voice, Streaming 
Media, videoconferencing, 
Video-on-demand, and other 
delay- and loss- sensitive 
applications 

Bursty data traffic that has long 
connect times but low data 
volumes; applications that are 
delay and loss tolerant 

Latency/Delay/Jitter Low latency and minimal 
delays 

Subject to latency, delay, and 
jitter because of its store-and-
forward nature 

Network intelligence Centralized Decentralized 
Bandwidth efficiency Low High 
Packet loss Low High 
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With the large capacities that are afforded with the new DWDM systems 
and other optical network elements, minimizing latency becomes more 
important than optimizing bandwidth via statistical multiplexing. Table 
2.2 is a brief comparison of circuits switching and packet switching.  

Here we drop the discussion of networking and switching modes and 
move forward toward inspecting PSTN more closely due to its importance. 

2.3 The PSTN 

This section talks about the public switched telephone network (PSTN). It 
talks about what comprises the PSTN, what sorts of technologies have been 
used to complete the connections, and how the signaling systems operate. 

2.3.1 The PSTN Infrastructure and Architecture 

Our views about what a network should be designed to support and what the 
infrastructure should be comprised of have changed quite a bit over the years, 
as applications and technology have changed. This section takes a look at how 
the PSTN infrastructure evolved and where it is today. 

The traditional PSTN infrastructure was specifically designed to support 
only voice communications. At the time this infrastructure was being 
designed, we had no notion of data communications. Initially the traffic type 
the PSTN was designed to support was continuous real-time voice. Another 
variable that's important to the design of the PSTN has to do with the length 
of calls. Most voice calls are quite short, so the circuit switches in the PSTN 
are engineered for call durations of three minutes or less. The average 
Internet session, on the other hand, lasts around an hour. This means that 
increased Internet access through the PSTN has, in some locales, put a strain 
on the local exchanges. If a circuit switch is blocked because it is carrying a 
long Internet session, people may not be able to get a dial tone. There are 
several solutions to this problem. For example, we can apply intelligence in 
front of some exchanges so that calls destined for ISPs can be diverted over a 
packet-switched network to the ISP rather than being completed on a circuit-
switched basis through the local exchange. 

Yet another variable that's important to the design of the PSTN has to 
do with what it was designed to support. The capacities of the channels in the 
PSTN are of the narrowband generation—they are based on 64Kbps channels. 
The worldwide infrastructure to accommodate voice communications evolved 
to include a series of circuit switches. Different switches are used based on 
the locations to which they're connecting. The switches have a high degree of 
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intelligence built into them, both for establishing the communications 
channels and for delivering the service logic to activate a growing array of 
features. In the traditional framework, the monolithic switches in the network 
had all the smarts. The switch manufacturer and the carrier worked together 
very closely, and the carrier was not able to introduce new features and 
services into a particular area until a software release was available for the 
switch platform through which the neighborhood was being serviced. Thus, 
carriers were often unable to roll out new services and features because they 
hadn't yet received the new software releases from the switch manufacturers. 
Over time, we have separated the functions of switching and connection 
establishment from the functions involved in the intelligence that enables 
various services and features to be activated. 

The traditional PSTN is associated with highly developed, although not 
necessarily integrated, operational support systems (such as billing systems, 
provisioning systems, network management systems, customer contact 
systems, and security systems). These systems have very well-developed 
business processes and techniques for managing their environments. But the 
various systems' databases cannot yet all speak to one another to give one 
comprehensive view.  

PSTN Architecture 

The PSTN includes a number of transmission links and nodes. There are 
basically four types of nodes: CPE nodes, switching nodes, transmission 
nodes, and service nodes. 

CPE Nodes 

CPE nodes generally refer to the equipment that's located at the customer site. 
The main function of CPE nodes is to transmit and receive user information. 
The other key function is to exchange control information with the network. 
In the traditional realm, this equipment includes PBXs, key telephone systems, 
and single-line telephones. 

Switching Nodes 

Switching nodes interconnect transmission facilities at various locations and 
route traffic through a network. They set up the circuit connections for a 
signal path, based on the number dialed. To facilitate this type of switching, 
the ITU standardized a worldwide numbering plan (based on ITU E.164) that 
essentially acts as the routing instructions for how to complete a call through 
the PSTN. The switching nodes include the local exchanges, tandem 
exchanges (for routing calls between local exchanges within a city), toll offices 
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(for routing calls to or from other cities), and international gateways (for 
routing calls to or from other countries). Primary network intelligence is 
contained in the Class 4 switches (that is, toll offices switches) and Class 5 
switches (that is, local exchange switches). The Class 4 toll switches provide 
long-distance switching and network features, and the Class 5 switches 
provide the local switching and telephony features that subscribers 
subscribe to. Figure 2.4 shows where the types of telephone exchanges are 
located. 

 

Figure 2.4 Types of telephone exchanges [4]. 

Transmission Nodes 

Transmission nodes are part of the transport infrastructure, and they 
provide communication paths that carry user traffic and network control 
information between the nodes in a network. The transmission nodes include 
the transmission media as well as transport equipment, including amplifiers 
and/or repeaters, multiplexers, digital cross-connects, and digital loop 
carriers. 

Service Nodes 

Service nodes handle signaling, which is the transmission of information to 
control the setup, holding, charging, and releasing of connections, as well as 
the transmission of information to control network operations and billing. A 
very important area related to service nodes is the ITU standard specification 
Signaling System 7 (SS7), which is covered later in this section. 

The Transport Network Infrastructure 

The transport network includes two main infrastructures. The first is the PDH, 
also known as T-carrier, E-carrier, and J-carrier wideband transmission 
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standards. This infrastructure was first introduced in the early 1960s. The 
second infrastructure of the transport network is the Synchronous Digital 
Hierarchy (SDH; ITU terminology), also known as Synchronous Optical 
Network (SONET; ANSI terminology), which was first formalized and 
standardized in 1988. SDH/SONET is the second generation of digital 
hierarchy, and it is based on a physical infrastructure of optical fibers. 

PDH and SDH/SONET are voice-centric circuit-switched network 
models that switch millions of 64Kbps circuits between various switching 
points. Each circuit is multiplexed numerous times for aggregation onto 
transmission facilities. Aggregation occurs at many points in the network: in 
the access network, within the local exchange, and throughout the 
interexchanges. Hence, a significant portion of the cost of a network goes to the 
equipment that performs this aggregation—the multiplexers and cross-
connects in both the PDH and SDH/SONET environments. 

2.3.2 Signaling Systems 

This section discusses the nervous system of the network: the signaling 
system. A great deal of information needs to be passed back and forth 
between the network elements in the completion of a call and also in the 
servicing of specialized features. Four main types of signals handle this 
passing of information: 

Supervisory signals—Supervisory signals handle the on-hook/off-hook 
condition. For instance, when you lift a telephone handset (that is, go off-
hook), a signal tells the local exchange that you want a dial tone, and if you 
exist in the database as an authenticated user, you are then delivered that 
service; when you hang up (that is, go back on-hook), you send a notice that 
says you want to remove the service. A network is always monitoring for these 
supervisory signals to determine when someone needs to activate or deactivate 
service. 

Address signals—Address signals have to do with the number dialed, 
which essentially consists of country codes, city codes, area codes, prefixes, 
and the subscriber number. This string of digits, which we refer to as the 
telephone number, is, in effect, a routing instruction to the network hierarchy. 

Information signals—Information signals are associated with activating 
and delivering various enhanced features. For instance, a call-waiting tone is 
an information signal, and pressing *72 on your phone might send an 
information signal that tells your local exchange to forward your calls.  

Alerting signals—Alerting signals are the ringing tones, the busy tones, 
and any specific busy alerts that are used to indicate network congestion or 
unavailability. 
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Signaling takes place in two key parts of the network: in the access 
network, where it's called loop signaling, and in the core, where it's called 
interoffice signaling (see Figure 2.5) 

 

Figure 2.5 Customer loop and interoffice signaling [4]. 

 

Figure 2.6 Per-trunk signaling [4]. 

Interoffice signaling has been through several generations of signaling 
approaches. In the first generation, called per-trunk signaling, the complete 
path— all the way to the destination point—is set up in order to just carry 
the signaling information in the first place (see Figure 2.6). This method uses 
trunks very inefficiently; trunks may be put into place to carry 20 or 30 
ringing tones, but if nobody is on the other end to take that call, the network 
trunk is being used but not generating any revenue. Also, when a call is 
initiated and begins to progress, you can no longer send any other signaling 
information over that trunk; being able to pass a call-waiting tone, for 
instance, would not be feasible. 

We have moved away from the per-trunk signaling environment to what 
we use today—common-channel signaling. You can think of common-
channel signaling as being a separate subnetwork over which the signaling 
message flows between intelligent networking components that assist in the 
call completion and assist in the delivery of the service logic needed to deliver 
the requested feature. Today, we predominantly use the ITU-T standard for 
common-channel signaling: SS7. 
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Figure 2.7 A Simplified view of SS7 component topology [5]. 

Common Channel Signaling System No. 7 

(SS7 or C7) is a global standard for telecommunications defined by the 
International Telecommunication Union (ITU) Telecommunication 
Standardization Sector (ITU-T). The standard defines the procedures and 
protocol by which network elements in the public switched telephone 
network (PSTN) exchange information over a digital signaling network to 
accomplish wireless and wireline call setup, routing and control. The ITU 
definition of SS7 allows for national variants such as North America’s 
American National Standards Institute (ANSI) and Bell Communications 
Research (Telcordia Technologies) standards and Europe’s European 
Telecommunications Standards Institute (ETSI) standard. A Simplified view 
of SS7 component topology is depicted in Figure 2.7. 
The SS7 network and protocol are used for: 
-Basic call setup, management and tear down 
-Wireless services such as personal communications services (PCS), wireless 
roaming and mobile subscriber authentication 
-Local number portability (LNP) 
-Toll-free (800/888) and toll (900) wireline services 
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-Enhanced call features such as call forwarding, calling party name/number 
display and three-way calling 
-Efficient and secure worldwide telecommunications 

Signaling Links  

SS7 messages are exchanged between network elements over 56 or 64 kilobit 
per second (kbps) bidirectional channels called signaling links. Signaling 
occurs out-of-band on dedicated channels rather than in-band on voice 
channels. Compared to in-band signaling, out-of-band signaling provides: 
-Faster call setup times (compared to in-band signaling using multi-
frequency (MF) signaling tones) 
-More efficient use of voice circuits 
-Support for Intelligent Network (IN) services, which require signaling to 
network elements without voice trunks (e.g., database systems) 
-Improved control over fraudulent network usage 

Signaling Points  

Each signaling point in the SS7 network is uniquely identified by a numeric 
point code. Point codes are carried in signaling messages exchanged between 
signaling points to identify the source and destination of each message. Each 
signaling point uses a routing table to select the appropriate signaling path 
for each message. 
There are three kinds of signaling points in the SS7 network (Figure 2.8): 
-SSP (Service Switching Point) 
-STP (Signal Transfer Point) 
-SCP (Service Control Point) 

 

 

Figure 2.8  SS7 Signaling Points [6]. 
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SSPs are switches that originate, terminate or tandem calls. An SSP sends 
signaling messages to other SSPs to setup, manage and release voice circuits 
required to complete a call. An SSP may also send a query message to a 
centralized database (an SCP) to determine how to route a call (e.g., a toll-
free 1-800/888 call in North America). An SCP sends a response to the 
originating SSP containing the routing number(s) associated with the dialed 
number. An alternate routing number may be used by the SSP if the primary 
number is busy or the call is unanswered within a specified time. Actual call 
features vary from network to network and from service to service. Network 
traffic between signaling points may be routed via a packet switch called an 
STP. An STP routes each incoming message to an outgoing signaling link 
based on routing information contained in the SS7 message. Because it acts 
as a network hub, an STP provides improved utilization of the SS7 network 
by eliminating the need for direct links between signaling points. An STP 
may perform global title translation, a procedure by which the destination 
signaling point is determined from digits present in the signaling message 
(e.g., the dialed 800 number, calling card number or mobile subscriber 
identification number). An STP can also act as a "firewall" to screen SS7 
messages exchanged with other networks. Because the SS7 network is 
critical to call processing, SCPs and STPs are usually deployed in mated pair 
configurations in separate physical locations to ensure network-wide service 
in the event of an isolated failure. Links between signaling points are also 
provisioned in pairs. Traffic is shared across all links in the linkset. If one of 
the links fails, the signaling traffic is rerouted over another link in the 
linkset. The SS7 protocol provides both error correction and retransmission 
capabilities to allow continued service in the event of signaling point or link 
failures. 

SS7 Signaling Link Types  

Signaling links are logically organized by link type ("A" through "F") 
according to their use in the SS7 signaling network. 
A Link: An "A" (access) link connects a signaling end point (e.g., an SCP or 
SSP) to an STP. Only messages originating from or destined to the signaling 
end point are transmitted on an "A" link. 
B Link: A "B" (bridge) link connects one STP to another. Typically, a quad of 
"B" links interconnect peer (or primary) STPs (e.g., the STPs from one 
network to the STPs of another network).  
C Link: A "C" (cross) link connects STPs performing identical functions into a 
mated pair. A "C" link is used only when an STP has no other route available 
to a destination signaling point due to link failure(s). Note that SCPs may 
also be deployed in pairs to improve reliability; unlike STPs however, mated 
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Figure 2.9  SS7 Signaling Link Types [6]. 

SCPs are not interconnected by signaling links. 
D Link: A "D" (diagonal) link connects a secondary (e.g., local or regional) 
STP pair to a primary (e.g., inter-network gateway) STP pair in a quad-link 
configuration. Secondary STPs within the same network are connected via a 
quad of "D" links. The distinction between a "B" link and a "D" link is rather 
arbitrary. For this reason, such links may be referred to as "B/D" links. 
E Link: An "E" (extended) link connects an SSP to an alternate STP. "E" links 
provide an alternate signaling path if an SSP’s "home" STP cannot be 
reached via an "A" link. "E" links are not usually provisioned unless the 
benefit of a marginally higher degree of reliability justifies the added 
expense. 
F Link: An "F" (fully associated) link connects two signaling end points (i.e., 
SSPs and SCPs). "F" links are not usually used in networks with STPs. In 
networks without STPs, "F" links directly connect signaling points. 

SS7 Protocol Stack  

The hardware and software functions of the SS7 protocol are divided into 
functional abstractions called "levels". These levels map loosely to the Open 
Systems Interconnect (OSI) 7-layer model defined by the International 
Standards Organization (ISO) as depicted in Figure 2.10. 

Message Transfer Part  

The Message Transfer Part (MTP) is divided into three levels. 
The lowest level, MTP Level 1, is equivalent to the OSI Physical Layer. MTP 
Level 1 defines the physical, electrical and functional characteristics of the 
digital signaling link. Physical interfaces defined include E-1 (2048 kb/s; 32  
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Figure 2.10 The OSI Reference Model and the SS7 Protocol Stack [6]. 

64 kb/s channels), DS-1 (1544 kb/s; 24 64kb/s channels), V.35 (64 kb/s), 
DS-0 (64 kb/s) and DS-0A (56 kb/s). 
MTP Level 2 ensures accurate end-to-end transmission of a message across 
a signaling link. Level 2 implements flow control, message sequence 
validation and error checking. When an error occurs on a signaling link, the 
message (or set of messages) is retransmitted. MTP Level 2 is equivalent to 
the OSI Data Link Layer. 
MTP Level 3 provides message routing between signaling points in the SS7 
network. MTP Level 3 reroutes traffic away from failed links and signaling 
points and controls traffic when congestion occurs. MTP Level 3 is equivalent 
to the OSI Network Layer. 

ISDN User Part (ISUP)  

The ISDN User Part (ISUP) defines the protocol used to set-up, manage and 
release trunk circuits that carry voice and data between terminating line 
exchanges (e.g., between a calling party and a called party). ISUP is used for 
both ISDN and non-ISDN calls. However, calls that originate and terminate 
at the same switch do not use ISUP signaling. 
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Telephone User Part (TUP)   

In some parts of the world (i.e., China and Brazil), the Telephone User Part 
(TUP) is used to support basic call setup and tear-down. TUP handles analog 
circuits only. In many countries, ISUP has replaced TUP for call 
management. 

Signaling Connection Control Part (SCCP)  

SCCP provides connectionless and connection-oriented network services and 
global title translation (GTT) capabilities above MTP Level 3. A global title is 
an address (e.g., a dialed 800 number, calling card number or mobile 
subscriber identification number) that is translated by SCCP into a 
destination point code and subsystem number. A subsystem number 
uniquely identifies an application at the destination signaling point. SCCP is 
used as the transport layer for TCAP-based services. 

Transaction Capabilities Applications Part (TCAP)   

TCAP supports the exchange of non-circuit related data between applications 
across the SS7 network using the SCCP connectionless service. Queries and 
responses sent between SSPs and SCPs are carried in TCAP messages. For 
example, an SSP sends a TCAP query to determine the routing number 
associated with a dialed 800/888 number and to check the personal 
identification number (PIN) of a calling card user. In mobile networks (IS-41 
and GSM), TCAP carries Mobile Application Part (MAP) messages sent 
between mobile switches and databases to support user authentication, 
equipment identification and roaming. 

Operations, Maintenance and Administration Part (OMAP) and ASE  

OMAP and ASE are areas for future definition. Presently, OMAP services may 
be used to verify network routing databases and to diagnose link problems. 
Here we wrap up the discussion of PSTN and its widely used signaling 
system and proceed with introduction of data networks and their 
characteristics in the next chapter. 

2.4 For Further Study 

For further information regarding the concepts discussed in this chapter 
please refer to following resources: 
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2.4.1 Switching Modes and Networking Modes 

[4] PP: 95-111 
[7] PP: 162-170 
[3] PP: 65-70 

2.4.2 The PSTN 

[4] PP: 113-144 
[8] 
[5] PP: 157-195 
[6] 
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Chapter 3 
Data Networks 
 
 
 
 
 
 
 

3.1 Introduction 

In this chapter, data networks will be thoroughly investigated. Mastering the 
related concepts is a prerequisite for understanding the materials introduced 
in the next chapters. We start by discussing some basic issues in the first 
section and then move forward to talk about local/wide area networks very 
briefly in the following section. In the fourth section, Internet Protocol will be 
examined fully. In Section 5, transport layer protocols are discussed. And 
finally, chapter ends with introducing materials for further studying. 

3.2 Data Communications Basics 

3.2.1 The Evolution of Data Communications 

Data communication is the exchange of digital information between computers 
and other digital devices via telecommunications nodes and wired or wireless 
links. To understand the evolution of networking services, it is important to 
understand the general computing architectures and traffic types, both of 
which have changed over time. 
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3.2.2 Data Communication Architectures 

In the rather brief history of data networking, a variety of architectures have 
arisen, and each has had unique impacts on network variables. Table 3.1 
shows a basic time line of the architectures that have prevailed during 
different periods. Each architecture has slightly different traffic 
characteristics, has slightly different requirements in terms of security and 
access control, and has presented a different volume and consistency of traffic 
to the network. With each new computing architecture, there has been a 
demand for new generations of network services. 

Table 3.1 Time Line of Data Networking Architectures [4]. 

 

3.2.3 Data Communication Traffic 

As the architecture of data networks has changed, so have the 
applications people use, and as applications have changed, so has the 
traffic on the network. This section talks about some of the most 
commonly used applications today and how much bandwidth they need, 
how sensitive they are to delay, where the error control needs to be 
performed, and how well they can tolerate loss. 

The most pervasive, frequently used application is e-mail. Today, 
it's possible to append an entire family vacation photo album to an e-
mail message, and this massive file would require a lot of bandwidth. But 
e-mail in its generic text-based form is a low-bandwidth application that 
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is delay insensitive. If an e-mail message gets trapped somewhere in the 
Net for several seconds, its understandability will not be affected 
because by the time you view it, it will have all been put on the server 
where your e-mail resides, waiting for you to pick it up. Another issue 
you have to consider with e-mail is error control. Networks today rarely 
perform error control because it slows down the traffic too much, so 
error control and recovery need to be handled at the endpoints. Instead, 
internetworking protocols deployed at the end node, such as 
Transmission Control Protocol (TCP), detect errors and request 
retransmissions to fix them. 

Another prevalent data networking application is transaction 
processing. Examples of transaction processing include a store getting 
approval for a credit card purchase and a police officer checking a 
database for your driver's license number to see whether you have any 
outstanding tickets. Transaction processing is characterized by many 
short inputs and short outputs, which means it is generally a fairly low-
bandwidth application, assuming that it involves text-based messages. 
Remember that if you add images or video, the bandwidth requirements grow 
substantially. Thus, if a police officer downloads a photo from your license, 
the bandwidth required will rise. Transaction processing is very delay 
sensitive because with transactions you generally have a person waiting for 
something to be completed (for example, for a reservation to be made, for a 
sales transaction to be approved, for a seat to be assigned by an airline). 
Users want subsecond response time, so with transaction processing, delays 
are very important, and increased traffic contributes to delay. With 
transaction processing, you have to be aware of delay, and error control is 
the responsibility of the endpoints. Transaction processing is fairly tolerant 
of losses because the applications ensure that all the elements and records 
associated with a particular transaction have been properly sent and 
received before committing the transaction to the underlying database. 

Another type of application is file transfer, which involves getting a 
large bulk of data moved from one computer to another. File transfer is 
generally a high-bandwidth application because it deals with a bulk of data. 
File transfer is machine-to-machine communication, and the machines can 
work around delay factors, as long as they're not trying to perform a real-
time function based on the information being delivered. So file transfer is a 
passive activity and it can tolerate delay. File transfer can also tolerate 
losses. With file transfer, error control can be performed at the endpoints. 

Two other important applications are interactive computing and 
information retrieval. Here bandwidth is dependent on the objects that you 
are retrieving: If it's text, it's low bandwidth; if it's pictures, it’s probably not. 
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Interactive computing and information retrieval are delay sensitive when it 
comes to downloads, so higher speeds are preferred. Real-time voice is a low-
bandwidth application but is extremely delay sensitive. Real-time audio and 
video require medium, high, and even very high bandwidth, and are 
extremely delay sensitive. Multimedia traffic and interactive services require 
very high bandwidth, and they are extremely delay sensitive and extremely 
loss sensitive. 

Anything that is text-based—such as e-mail, transaction processing, file 
transfer, and even the ability to access a database for text-based 
information—is fairly tolerant of losses. But in real-time traffic, such as 
voice, audio, or video, losses cause severe degradation in the application. 

3.2.4 The OSI Reference Model and Protocols 

Before two computers or network devices can exchange information, they 
must establish communication, and this is where protocols come in. A 
network protocol enables two devices to communicate by using one set of 
rules. The OSI model and protocol standards help to ensure that networking 
devices are capable of working together over a network. 

The OSI Reference Model 

In the early 1970s, a problem was starting to develop. There were many 
different computer manufacturers, and there were many incompatibilities 
among them. Furthermore, each manufacturer created different product lines, 
and even within one company there were often incompatibilities between their 
product lines. So the International Standards Organization got involved and 
created the Open Systems Interconnection (OSI) reference model, which is a 
reference blueprint for device manufacturers and software developers to use 
when creating products. 

The OSI model, shown in Figure 3.1, has seven layers that describe the 
tasks that must be performed to transfer information on a network. When 
data is being transferred over a network, it must pass through each layer of the 
OSI model. As the data passes through each layer, information is added to that 
data. At the destination, the additional information is removed. Layers 4 
through 7 occur at the end node, and Layers 1 through 3 are the most 
important to telecommunications networks. It's important to understand that 
this model is exactly that—a model. It's a conceptual framework that is useful 
for describing the necessary functions required of a network device or 
member. No actual networking product implements the model precisely as 
described. 
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Figure 3.1  The OSI reference model [4]. 

Layer 7, the application layer, is responsible for exchanging 
information between the programs that are running on a computer and other 
services on a network. This layer supports application and end-user 
processes. It acts as a window for applications to access network services. It 
handles general network access, flow control, error recovery, and file transfer. 
Examples of application layer protocols include File Transfer Protocol (FTP), 
Telnet, Simple Mail Transfer Protocol (SMTP), and Hyper-text Transfer 
Protocol (HTTP). 

Layer 6, the presentation layer, formats information so that a software 
application can read it. It performs transformations on the data to provide a 
standardized application interface and common communication services. It 
offers services such as encryption, compression, and reformatting. The 
presentation layer adds a field in each packet that tells how the information 
within the packet is encoded. It indicates whether any compression has been 
performed and, if it has, it indicates what type of compression, so that the 
receiver can decompress it properly. It also indicates whether there has been 
any encryption, and if there has, it indicates what type, so that the receiver 
can properly decrypt it. The presentation layer ensures that the transmitter 
and receiver are seeing the information in the same format. 

Layer 5, the session layer, supports connections between sessions and 
handles administrative tasks and security. It establishes and monitors 
connections between computers, and it provides the control structure for 
communication between applications. Examples of session layer protocols 
include NetBIOS, DSN, and Lightweight Directory Access Protocol (LDAP). 
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Layer 4, the transport layer, corrects transmission errors and ensures 
that the information is delivered reliably. It provides an end-to-end error 
recovery and flow control capability. It deals with packet handling, 
repackaging of messages, division of messages into smaller packets, and 
error handling. Examples of transport layer protocols include Transmission 
Control Protocol (TCP), User Datagram Protocol (UDP), and Sequenced 
Packet Exchange (SPX). 

Layer 3, the networking layer, identifies computers on a network and 
determines how to direct information transfer over that network. In other 
words, it is a routing and relaying layer. It defines how to move information 
between networks as well as between devices. The key responsibility of this 
layer is to add the addressing information and the control functions needed 
to move the data through the network and its intermediate nodes. It is 
involved in establishing, maintaining, and terminating connections, 
including packet switching, routing, data congestion, reassembly of data, 
and translation of logical addresses to physical addresses. Examples of 
networking layer protocols are X.25, Internet Protocol (IP), Internetwork 
Packet Exchange (IPX), and Message Transform Program 3 (MTP3). 

Layer 2, the data link layer, groups data into containers to prepare that 
data for transfer over a network. It puts the ones and zeros into a container 
that allows the movement of information between two devices on the same 
network. The protocols at this layer specify the rules that must be followed in 
transmitting a single frame between one device and another over a single data 
link. Bits are packaged into frames of data, and they include the necessary 
synchronization, error control, and flow control information. Examples of data 
link layer protocols in a LAN environment include Ethernet, Token Ring, and 
Fiber Distributed Data Interface (FDDI). Examples of data link layer protocols 
in a WAN environment include Frame Relay and ATM. Example of data link 
layer protocol within the PSTN is Signaling System 7’s MTP2. 

Layer 1, the physical layer, defines how a transmission medium 
connects to a computer, as well as how electrical or optical information is 
transferred on the transmission medium. The physical layer defines the types 
of cables or wireless interfaces that are allowed, the voltage levels used to 
represent the bits or the optical levels, the types of connectors that are 
allowed, and the types of transmission rates that can be supported. Every 
network service and every network device has definitions at the physical layer 
in terms of what it can physically interface with. 

Protocols and Protocol Stacks 

Protocols are the hardware or software components that carry out the OSI 
model guidelines for transferring information on a network. A protocol may be 
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one component or a collection of components that carry out a task. A protocol 
stack, or protocol suite, is made up of multiple protocols that are used to 
exchange information between computers. One protocol in the stack might be 
used to specify how network interface cards (NICs) communicate, and another 
might specify how a computer reads information from the NIC. Figure 3.2 
shows the TCP protocol stack and how it relates to the OSI model. 

 

Figure 3.2  The OSI model versus the TCP/IP stack [4]. 

A layer is a section of a protocol stack that is responsible for 
performing one particular aspect of information transfer. Because some 
protocols are capable of performing one function, one layer in a protocol 
stack may not necessarily correspond to one layer in the OSI model. 

3.3 Local/Wide Area Networking 

Local Area Networks are, essentially, relatively high-speed data networks 
which interconnect computing devices within a small geographical or local 
area. They are generally owned by a single organization, and are 
independent of public networks. LANs are private networks in the sense that 
they serve a single organization within a limited environment. The costs 
associated with a LAN are the capital and installation costs which are met 
by the users (owners). The local environment usually refers to a site with a 
maximum span of a few kilometers, housing a relatively small number of 
buildings. 

A wide area network (WAN) is a group of computer networks that are 
connected over long distances by telecommunications links, which can be 
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either wireline or wireless. A number of WAN links can be used, each of 
which was developed to address specific requirements in data 
communications. To meet specific network and application needs, a number 
of WAN techniques (whether deployed over public or private networks) have 
been developed and become popular over the years. Leased lines offer the 
greatest network management control. With leased lines, a known amount of 
bandwidth is provisioned, and no one else has access to it; also, you know 
who the users are. The disadvantage is that leased lines are very costly, you 
pay a premium for the comfort of having control over your own destiny. 

To reduce the costs associated with leased lines, many customers 
migrate to Frame Relay services. Frame Relay was introduced in the early 
1990s and was largely designed as an application for LAN-to-LAN 
interconnection. Because numerous subscribers share its virtual circuits, 
Frame Relay offers great cost-efficiency as compared to leased lines. Another 
WAN alternative to leased lines is Asynchronous Transfer Mode (ATM), which 
is perhaps the best solution, especially in environments that have intensive 
multimedia applications or other high-bandwidth applications. Virtual private 
networks (VPNs) are increasingly being used in WANs as well. 

Despite the fact that there are numerous WAN options, all of which can 
offer various cost-efficiencies or performance improvements, the many 
separate networks in use translate into high costs associated with the overall 
infrastructure—for both the end user and the operator. One goal of WANs 
today is to integrate voice, data, and video traffic so that it runs through a 
common platform (in terms of access nodes) and through a common core 
network (in terms of the transport infrastructure). For example, the goal of 
ATM is to provide an integrated broad-band infrastructure that minimizes the 
range of required equipment that needs to be maintained on an on-going 
basis.  

3.4 IP  

IP is the central pillar of the Internet. The Internet Protocol was designed 
primarily for internetworking as being a simple protocol almost any 
network could carry. IP provides a “best effort” service over the network 
layer in the form of a datagram service. Data from the transport layer (TCP 
or UDP) is converted into IP datagrams and carried over the network. An IP 
network is a network of nodes connected using IP, but since those 
connections may themselves be formed over other networks, the IP network 
may be considered to be a network overlaid on networks of other protocols 
used for the actual data transport. 
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So as to allow wide application to different network types, IP places 
very few requirements on the underlying network. It considers the network 
to be both dumb and unreliable, so it is left to the end points or 
applications to confirm that application data has been delivered correctly, 
i.e., uncorrupted and meeting any timing requirements. If it is not, it is up 
to them to take any necessary action. 

This simplicity extends to the intermediate nodes, or routers, within 
the IP network. These have two main functions to perform: to route and 
forward IP packets towards their destination, and to fragment larger blocks 
into smaller IP blocks should this be required for the underlying transport 
network technology. 

3.4.1 IP Packet Format 

The current version of IP is version 4. An IPv4 packet consists of a 13-field 
variable length header plus the data field itself. The maximum length of an 
IP datagram, header and data, is 64 Kbytes. The header fields subdivide 
roughly into blocks of 4 bytes, and the IP packet is represented as rows of 
32 bits, as shown in Figure 3.3. 

 
Figure 3.3  IP packet [3]. 

The first row corresponds to four fields associated with general 
formatting of the IP packet. The Version (V) field (4 bits) identifies the version 
of the protocol being used. The Internet Header Length (IHL) field, also 4 
bits, indicates the length of the IP header in 32 bit blocks and thus whether 
any optional header features are invoked after the address fields. The third 
field is the 8 bit long Type of Service (ToS) field. In theory, this allows the 
host to specify priorities (0-7), to indicate whether delay, throughput or 
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reliability are of prime importance, but in practice this tends to be ignored by 
most routers. The total length field is fairly straightforward. A 16 bit field 
gives a maximum datagram length of 216 = 65, 536 bytes, but typically 
datagrams are less than 1500 bytes, and are often limited to 576 bytes, the 
minimum size all IP transport mechanisms are guaranteed to carry. 

The second row within the header is used to manage the process of 
fragmentation, where larger packets are broken down into smaller packets 
for transmission. Fragmentation can take place at intermediate routers in 
order to match the capabilities of the underlying network, but once 
fragmented, a packet is not reassembled until it reaches the receiver. The 16 
bit identification field allows the host to determine which datagram a 
fragment belongs to. All parts of a datagram will have the same identifier 
field. The “Don't Fragment (DF)”, “More Fragments (MF)” and “Fragment 
Offset” relate to the management of datagram fragmentation. When set, DF 
indicates that fragmentation of the packet is not allowed. MF indicates that 
more fragments are following, and all fragments but the last one have this 
field set. The fragment offset indicates where in the current datagram the 
current fragment fits. The field is 13 bits long, 3 bits shorter than the 16 bit 
IP packet length for the DF and MF bits as well as one which is not currently 
used, so fragmentation takes place into IP datagrams of integer number of 8 
byte blocks.  

The third row deals with aspects of monitoring a packet's progress 
through a network. The Lifetime or Time To Live (TTL) field is used to count 
hops and prevent packets from overstaying in the network, through, for 
example, circular routing. Originally intended to be a time-based count, it 
has become hop-based count by default as most routers were unable to give 
an accurate and coordinated version of time. The router simply decrements 
the field by one each time a packet passes through. When the field reaches 
zero, the packet is discarded. The protocol field indicates which transport 
protocol the datagram is associated with, for example, TCP or UDP. It is fully 
defined in RFC 1700. The checksum is used to protect the header. Since the 
lifetime field is changed by the router, the checksum needs to be 
recalculated for each hop. The checksum is very basic and provides a 
rudimentary level of protection, although depending on their position, as 
little as two single bit errors can go unnoticed. Packets with corrupted 
headers are discarded. 
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3.5 Internet Transport Service Classes 

The Internet model basically assumes that the network can only provide 
an unreliable connectionless service, and only provides two transport 
classes, TCP, which equates to the ISO Class 4 service, and UDP, which is 
connectionless. Both these protocols operate over Internet Protocol. 

3.5.1 User Datagram Protocol 

The User Datagram Protocol (UDP) provides a simple connectionless 
mechanism for applications to exchange messages. While the fact that no 
connection is established means that the protocol has very low signaling 
overheads, it also means that there is no error or flow control. For some 
real-time services with very low delay requirements like voice transmission, 
a lack of flow control is an advantage, since any lost data would not be 
repeated anyway. UDP is also used for broadcast messages since a 
connection-orientated approach is not then appropriate, and for periodic 
messages like routing table updates where if the data is lost, it does not 
matter since the existing data can be retained until the next update. Some 
services, like DNS, which could use TCP, usually use UDP for efficiency. 
Rather than wasting the time for setting up a connection, as well as adding 
to the load of the host, a connectionless UDP request is made. If the 
request or its response is lost, another DNS server will be tried after a 
timeout. 

The UDP PDU has four 16 bit fields, shown in Figure 3.4, with the 
source and destination ports referring to application processes on local and 
remote hosts. The source port is optional; it is set to zero if it is not used. 
The length field refers to the total number of octets in datagram including 
the header. 

Note that the UDP segment does not include the address of the 
recipient, only the port number. This is because UDP is designed for 
transport over IP, and the IP header holds that information. There is still the 
problem that since the UDP header does not contain that information 
directly, a UDP datagram could be delivered to the wrong host and the 
transport layer would be unaware of this fact. To avoid this, the source 
address, destination address, protocol and length of the IP packet header are 
considered to form a pseudo-header which is added to the UDP datagram for 
the purposes of calculating the frame check sequence. If the datagram is 
delivered to the wrong host, the checksum will fail. The checksum is optional 
and is set to zero if not required, but if it is used it can be checked by 
intermediate routers which can drop corrupted packets to save on network 
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load. Note that this means that UDP is dependent on IP and cannot be used 
as a transport protocol for other network protocols. That dependency works 
only one way, however. IP is not restricted to carrying UDP. 

 

Figure 3.4  UDP packet [3]. 

3.5.2 Transmission Control Protocol (TCP) 

Transmission Control Protocol (TCP) provides a connection-orientated 
communications protocol designed to work over IP (see Figure 3.5). Like 
UDP, TCP allows communication between specific processes on each host. 
So there can be many different connections between two hosts 
simultaneously. However, since the identification of a connection is done on 
the basis of ports on each host, there can only be one connection between a 
given source port and a given destination port on a pair of hosts. 

Since IP only provides an unreliable transfer mechanism, and TCP is 
connection-orientated, TCP must provide mechanisms to ensure that any 
lost or corrupted data is replaced before delivery to the upper layers. This is 
done using ARQ mechanisms. TCP has three phases of operation: 
connection establishment, data transfer and connection termination. A 
three-way handshake is used in the connection phase because of the 
unreliable network service. TCP is a full duplex stream-oriented protocol. 
Data is passed to TCP from an upper layer protocol in a continuous fashion. 
It is then blocked arbitrarily into segments. Being full duplex, the protocol 
allows data to be sent in either direction between processes. 

TCP Segment 

The structure of a TCP segment is shown in Figure 3.6. Each segment 
serves a dual purpose. It sends data to its peer process at the other end of 
the transmitting link, and because the protocol is full duplex, acknowledges 
the receipt of data sent by its peer. The source and destination port fields 
are 16 bit numbers local to that host. These fields are combined with the IP 
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Figure 3.5  TCP [3]. 

address of the host to give the “socket” number, a unique address called the 
Transport Service Access Point (TSAP). 

In order to know that data has been received correctly, TCP provides 
sequence numbering. Since the segments can vary in size, this numbering is 
done on the basis of individual bytes in the transmitted data stream rather 
than by segment. Each segment carries the sequence number in the second 
field and the acknowledgement number in the third field. The sequence 
number is the number of the first byte in the segment. The 
acknowledgement number is the number of the next byte which that host 
expects to receive from its peer, and therefore acknowledges to the peer that 
all data up to that point has been received correctly.  

Each segment does not need to be acknowledged individually. The 
recommendation is to wait for half a second after receiving a packet before 
sending an acknowledgement in case further data is received, reducing the 
load of acknowledgement-only segments. If a second segment is received 
within this time, both are immediately acknowledged. If the half second 
passes without a further segment, an acknowledgement is sent for the 
first segment on its own. Lost segments could result either in data being 
lost or an acknowledgement being lost. The first case can be identified by 
the destination acknowledging a lower sequence number than expected. 
The data then has to be resent. A lost acknowledgement will cause the 
transmitter to resend the data after a time-out. If the receiver receives 
data it has already received correctly, it sends an additional 
acknowledgement and discards the duplicate data. In fact, an 
acknowledgement for a subsequent segment may be received within the 
time-out. Acknowledgements specify that all data up to the given byte has 
been received. 
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Figure 3.6  TCP segment [3]. 

TCP allows various optional elements in the header to allow for 
negotiating session parameters. A 4-bit header length field indicates the 
length of the header in 32 bit words. Usually the options field is not used, 
resulting in a header length of 20 bytes. 
The flag field contains six flags as follows: 

-URG: Indicates that the Urgent Pointer field is to be used. The latter 
contains the number of the byte in the data field where the urgent data 
ends. Although this is defined, many implementations do not make use of 
this feature. 
-ACK: indicates that an acknowledgement is being carried in this PDU and 
thus the Acknowledgement Number field is carrying a valid number. 
-PSH: Indicates that data the peer holds awaiting transmission should be 
sent on directly and not stored in a buffer (i.e. pushed). 
-RST: Used to indicate a connection should be reset. 
-SYN: Used to establish a connection. 
-FIN: Used to terminate a connection. 

The window size field indicates the number of bytes that the receiver would 
be able to accept. TCP has the same issue of a lack of receiver address as 
UDP, which has avoided it in the same way by constructing a pseudo-
header with the source address, destination address, protocol and length of 
the IP packet header which is used with the other 16 bit words in the 
segment to construct the frame check sequence. However, the frame check 
sequence for TCP is not optional as it was in UDP. Like UDP, this restricts 
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TCP to working over IP rather than any network protocol, but does reduce 
the overall overhead of TCP and IP to 40 header bytes. 

Having discussed the fundamental concepts related to this thesis, we 
then move on to concentrate more closely on issues directly affecting V/FoIP 
networks in the next chapter. 

3.6 For Further Study 

For further information regarding the concepts discussed in this chapter 
please refer to following resources: 
[4] 
[7] 
[3] 
[9] 
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Chapter 4 
Voice/Fax over IP 
 
 
 
 
 
 
 

4.1 Introduction 

In this chapter, we introduce and discuss the concepts directly related to 
this thesis: Voice/Fax over IP architectures and standards. In Section 2, 
after this introduction, some fundamental issues related to IP telephony are 
explored. In the next section we will visit call signaling protocols and 
examine the current standards. Fax over IP with its 2 flavors, i.e. real-time 
and non-real-time, are examined thoroughly in Section 4. IP telephony 
quality of service is discussed in Section 5. Finally in Section 6, some 
statistics are presented to justify the action of venturing into producing yet 
another set of protocols and architectures for F/VoIP. As always, chapter 
ends with introducing materials for further studying. 

4.2 IP Telephony Fundamentals  

4.2.1 Introduction 

Internet telephony is the real-time delivery of voice and other multimedia 
data types between two or more parties, across networks using the Internet 
protocols, and the exchange of information required to control this delivery.  
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Figure 4.1 Internet telephony protocol stack [10]. 

Internet telephony offers the opportunity to design a global multimedia 
communications system that may eventually replace the existing telephony 
infrastructure. 

Unlike in traditional telecommunications networks where distribution 
applications (radio, TV) and communications applications (telephone, fax) 
are quite distinct in terms of technology, user interface, communications 
devices and even regulatory environments, this is not the case for the 
Internet. The delivery of stored (or streaming) media and telephone-style 
applications can share almost the entire underlying protocol infrastructure. 

Internet telephony differs from Internet multimedia streaming 
primarily in the control and establishment of sessions, the “signaling”. While 
we generally assume that a stored media resource is available at a given 
location, identified at different levels of abstraction by a URL (Uniform 
Resource Locator), participants in phone calls are not so easily located. 
Personal mobility, call delegation, availability, and desire to communicate 
make the process of signaling more complex. In the Internet, the Real Time 
Streaming Protocol (RTSP) is the standard protocol for controlling 
multimedia streams. The Session Initiation Protocol (SIP) is used for 
signaling Internet telephony services. 

Both RTSP and SIP are part of a protocol stack that has emerged from 
the Internet Engineering Task Force (IETF) - the Internet Multimedia 
Conferencing Architecture. The protocols encompass both IPtel services and 
stored media services in an integrated fashion. Figure 4.1 depicts the stack, 
along with other protocols likely to be used for both Internet streaming 
media and Internet telephony. Unlike circuit-switched telephony, Internet 
telephony services are built on a range of packet switched protocols. For 
example, the functionality of the SS7 ISUP and TCAP telephony signaling 
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protocols encompass routing, resource reservation, call admission, address 
translation, call establishment, call management and billing. In an Internet 
environment, routing is handled by protocols such as the Border Gateway 
Protocol (BGP), resource reservation by the Resource Reservation Protocol 
(RSVP) or other resource reservation protocols. SIP translates application-
layer addresses, establishes and manages calls. There is currently no 
Internet telephony billing protocol in the Internet, although RADIUS or 
DIAMETER, in combination with SIP authentication, may initially serve that 
purpose for calls through Internet telephony gateways. Having a number of 
different protocols, each serving a particular function, allows for modularity, 
flexibility, simplicity, and extensibility. End systems or network servers that 
only provide a specific service need only implement that particular protocol, 
without interoperability problems. Furthermore, protocol components can be 
reused in other applications, avoiding re-invention of specific functions in 
each application. 

Even though the term Internet telephony is often associated with 
point-to-point voice service, none of the protocols described here are 
restricted to a single media type or unicast delivery. Indeed, one of the 
largest advantages of Internet telephony compared to the Plain Old 
Telephone System (POTS) is the transparency of the network to the media 
carried, so that adding a new media type requires no changes to the network 
infrastructure. Also, at least for signaling, the support of multiparty calls 
differs only marginally from two-party calls. 

The protocols mentioned, and the rich services they provide, are just 
one part of the picture for IP telephony. As it was designed for data 
transport, the Internet currently offers only best effort service. The result is 
that voice packets suffer heavy losses and significant delays when there is 
network congestion, making the speech quality poor. A number of efforts in 
the area of Quality of Service (QoS) management are underway in order to 
address this issue. 

Typical Internet applications use TCP/IP, whereas VoIP uses 
RTP/UDP/IP. Although IP is a connectionless best effort network 
communications protocol, TCP is a reliable transport protocol that uses 
acknowledgments and retransmission to ensure packet receipt. Used 
together, TCP/IP is a reliable connection-oriented network communications 
protocol suite. TCP has a rate adjustment feature that increases the 
transmission rate when the network is uncongested, but quickly reduces the 
transmission rate when the originating host does not receive positive 
acknowledgments from the destination host. TCP/IP is not suitable for real-
time communications, such as speech transmission, because the 
acknowledgment/retransmission feature would lead to excessive delays. 
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UDP provides unreliable connectionless delivery service using IP to transport 
messages between end points in an internet. RTP (Real-Time Transport 
Protocol), used in conjunction with UDP, provides end-to-end network 
transport functions for applications transmitting real-time data, such as 
audio and video, over unicast and multicast network services. RTP does not 
reserve resources and does not guarantee quality of service. A companion 
protocol RTCP (Real-time control protocol) does allow monitoring of a link, 
but most VoIP applications offer a continuous stream of RTP/UDP/IP 
packets without regard to packet loss or delay in reaching the receiver. 

4.2.2 Differences between Internet Telephony and the PSTN 

Internet telephony differs in a number of aspects from the PSTN, both in 
terms of architecture and protocols. These differences affect the design of 
telephony services. 

Fundamentally, IP telephony relies on the “end-to-end” paradigm for 
delivery of services. Signaling protocols are between the end systems 
involved in the call; network routers treat these signaling packets like any 
other data, ignoring any semantics implied by them. Note, however, that IP 
telephony can make use of “signaling routers” (which are effectively proxies) 
to assist in functions such as user location. In this case, these proxies can 
be used for routing only of initial signaling messages. Subsequent messages 
can be exchanged end-to-end. As a consequence of the end-to-end signaling 
paradigm, call state is as well end to end, as are instantiation of many 
telephony features. 

The Internet itself is both multi-service and service-independent. It 
provides packet-level transport, end-to-end, for whatever services are 
deployed at the end systems through higher layer protocols and software. 
This leads to tremendous flexibility and extensibility. New application level 
services, such as the web, email, and now IP telephony, can be created and 
deployed by anyone with access to the Internet. 

IP Telephony separates call setup from reserving resources. In the 
Internet, protocols such as RSVP are used to reserve resources. These 
protocols are application independent, and reservations may take place 
before or after actual flow of data begins. When used after the flow of data 
begins, the data will be treated as best effort. As a result, IP telephony can 
be used without per-call resource reservation in networks with sufficient 
capacity. 

Due to the limited signaling abilities of PSTN end systems, PSTN 
addresses (phone numbers) are overloaded with at least four functions: end 
point identification, service indication, indication of who pays for the call and 



 46
 
 

carrier selection. The PSTN also ties call origination with payment, except as 
modified by the address (800 numbers) or specific manual features. IPtel 
addresses, which are formulated as URL’s, are used solely for endpoint 
identification and basic service indication. The other functions, such as 
payment and carrier selection, are more readily handled by the protocols, 
such as RSVP and RTSP, which carry the addresses. 

The open, multi-service, end-to-end nature of the Internet also means 
that various components of telephony services can be provided by completely 
different service vendors (of course, agreement on protocols is necessary for 
interoperability). For example, one vendor can provide a name to IP address 
mapping service, another can provide voice-mail, another can provide 
mobility services, while yet another can provide conferencing services. 
Furthermore, the end-to-end nature of the Internet means that anyone with 
an Internet connection can run and operate such a service. This leads to an 
easy-entry, highly competitive marketplace for all Internet services, such as 
IP telephony. 

This separation of functionality also simplifies the number portability 
problem. As an organization may provide just a name mapping service, a 
user can change other service providers (such as their voicemail provider or 
ISP) without a change in name. Changing name providers may require a 
change in name. However, automated white-pages services allow another 
layer of indirection which further alleviates the number portability problem. 

4.2.3 Features of Internet Telephony 

The architectural differences described in the previous section lead to a 
number of advantages from both a user perspective and a carrier 
perspective: 

Adjustable quality: While IPtel currently has the reputation for low quality 
(due to low bitrate codecs, in part) there is no reason (except lack of 
bandwidth) why the same technology cannot supply high quality music. 
Because the Internet is not a service-specific network, the media exchanged 
is chosen entirely by end systems. As such, end systems can control the 
amount of compression based on network bandwidth or the content to be 
transmitted. For example, music-on-hold (as it is not speech) is not suitable 
for very low bit-rate speech codecs. 

Security: The Internet has the reputation as being insecure. SIP can encrypt 
and authenticate signaling messages; RTP supports encryption of media. 
Together, these provide secure communications. 
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User identification: Standard POTS and ISDN telephone service offers caller 
ID indicating the number (or, occasionally, name) of the caller, but during a 
bridged multi-party conference, there is no indication of who is talking. The 
real-time transport protocol (RTP) used for Internet telephony easily supports 
talker indication in both multicast and bridged configurations and can 
convey more detailed information if the caller desires. 

User interface: Most POTS and ISDN telephones have a rather limited user 
interface, with at best a two line liquid crystal display or, in the public 
network, cryptic commands like “*69” for call-back. Advanced PSTN features 
such as call-forwarding are rarely used or customized, since the sequence of 
steps is typically not intuitive. This is due in part to the limited signaling 
capabilities of end systems, and the general notion of “network intelligence” 
as compared to “end system intelligence”. As IP telephony end systems have 
much richer signaling capabilities, the graphical user interface offered by 
Internet telephony can be more readily customized and offer richer 
indications of features, process and progress. 

Computer-telephony integration: Because of the complete separation of 
data and control paths and the separation of phone equipment from the PC’s 
controlling them, computer-telephony integration (CTI) is very complex. 
Much of the call handling functionality can be easily accomplished once the 
data and control path pass through intelligent, network-connected end 
systems. 

Feature Ubiquity: The current phone system offers very different features 
depending on whether the parties are connected by the same Private Branch 
Exchange (PBX), reside within the same local calling area or are connected 
by a long-distance carrier. Even trivial features such as caller ID only work 
for a small fraction of international calls, for example. A PBX may not allow a 
call to be forwarded outside that PBX, or causes the forwarded call to still go 
through the PBX. Internet telephony does not suffer from this problem. This 
is because the Internet protocols are internationally used, and because 
services are defined largely by the end systems. 

Multimedia: Adding additional media such as video, shared whiteboards or 
shared applications is much easier in the Internet environment compared to 
the POTS and ISDN, as multiplexing is natural for packet networks. This 
makes signaling protocols simpler as well, as issues such as B-channel 
allocation and synchronization are non-existent in the Internet. 

Carriers benefit as well: 
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Silence suppression and compression: Sending audio as packets makes it 
easy to suppress silence periods, further reducing bandwidth consumption, 
particularly in a multi-party conference or for voice announcement systems. 
Unlike the PSTN, which generally does such silence suppression across 
trans-continental links, IP telephony performs silence suppression at the 
endpoints. Furthermore, as packet networks are much more suitable to 
multiplexing, no network support is required to take advantage of end 
system silence suppression. This leads to a reduction in cost to perform the 
silence suppression (as it’s distributed to end systems where it can be done 
cheaply), and an improvement in the scope of its benefits. Furthermore, 
compression can be used at end systems to reduce bandwidth consumption 
across the entire network. Unfortunately, compression is at odds with 
enhanced voice quality services. However, there exist codecs which can 
compress wideband speech to 16 kb/s, which can give both excellent voice 
quality and reduced bandwidth compared to the PSTN. Note that silence 
suppression and compression compensate for the decreased efficiency of 
packet switching. 

Shared facilities: The largest operational savings can probably come from 
provisioning and managing a single, integrated network, rather than 
separate voice, data and signaling networks. 

Advanced services: From first experiences and protocols, it appears to be 
far simpler to develop and deploy advanced telephony services in a packet-
switched environment than in the PSTN. Internet protocols, such as SIP that 
support standard CLASS (Custom Local Area Signaling Services) features 
(such as Call Forward No Answer) take only a few tens of pages to specify. 
They can perform the functions of both the user-to-network signaling 
protocols such as Q.931 as well as the network signaling (ISUP, Signaling 
System 7). 

Separation of voice and control flow: In telephony, the signaling flow, even 
though carried on a separate network, has to “touch” all the intermediate 
switches to set up the circuit. Since packet forwarding in the Internet 
requires no setup, Internet call control can concentrate on the call (rather 
than connection) functionality. 

4.3 Call Signaling 

Without any established standards, most early implementations were based 
on proprietary technology. As these packet telephony networks grew and 
interconnection dependencies emerged, it became clear that the industry 
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needed standard protocols. Several groups took up the challenge, resulting 
in independent standards, each with its own unique characteristics. In 
particular, network equipment suppliers and their customers were left to 
sort out the similarities and differences between four different signaling and 
call-control protocols: 
• H.323 
• Media Gateway Control Protocol (MGCP) 
• Session Initiation Protocol (SIP) 
• H.248/Megaco 
In the process of implementing workable solutions, network engineers had to 
determine how each of these protocols worked and which ones were best for 
particular networks and applications. This section provides some guidance 
and understanding of these protocols. 

4.3.1 IP Telephony Standards 

VoIP comprises many standards and protocols. Basic terminology must be 
understood in order to understand the applications and usage of VoIP. The 
following definitions serve as a useful starting point (the protocols are listed 
in alphabetical order): 
• H.248 is an ITU Recommendation that defines “Gateway Control Protocol.” 
H.248 is the result of a joint collaboration between the ITU and the Internet 
Engineering Task Force (IETF). It is also referred to as IETF RFC 2885 
(Megaco), which defines a centralized architecture for creating multimedia 
applications, including VoIP. In many ways, H.248 builds on and extends 
MGCP. 
• H.323 is an ITU Recommendation that defines “packet-based multimedia 
communications systems.” In other words, H.323 defines a distributed 
architecture for creating multimedia applications, including VoIP. 
• IETF refers to the Internet Engineering Task Force (http://www.ietf.org/), a 
community of engineers that seeks to determine how the Internet and 
Internet protocols work, as well as to define the prominent standards. 
• ITU is the International Telecommunication Union, an international 
organization within the United Nations System (http://www.unsystem.org/) 
where governments and the private sector coordinate global telecom 
networks and services. 
• Megaco, also known as IETF RFC 2885 and ITU Recommendation H.248, 
defines a centralized architecture for creating multimedia applications, 
including VoIP. 
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• Media Gateway Control Protocol (MGCP), also known as IETF RFC 2705, 
defines a centralized architecture for creating multimedia applications, 
including VoIP. 
• Real-Time Transport Protocol (RTP), also known as IETF RFC 1889, defines 
a transport protocol for real-time applications. Specifically, RTP provides the 
transport to carry the audio/media portion of VoIP communication. RTP is 
used by all the VoIP signaling protocols. 
• Session Initiation Protocol (SIP), also known as IETF RFC 3261, defines a 
distributed architecture for creating multimedia applications, including VoIP. 

4.3.2 Understanding Centralized and Distributed Architectures 

In the past, all voice networks were built using a centralized architecture in 
which dumb endpoints (telephones) were controlled by centralized switches. 
Although this model worked well for basic telephony services, it mandated a 
trade-off between simplified management and endpoint and service 
innovation. 

One of the benefits of VoIP technology is that it allows networks to be 
built using either a centralized or a distributed architecture. This flexibility 
allows companies to build networks characterized by both simplified 
management and endpoint innovation, depending on the protocol used. 

In general, centralized architectures are associated with MGCP and 
H.248/Megaco protocols. These protocols were designed for a centralized 
device—called a media gateway controller or call agent—that handles 
switching logic and call control. The centralized device talks to media 
gateways, which route and transmit the audio/media portion of the calls (the 
actual voice information). 

In centralized architectures, the network intelligence is centralized and 
endpoints are relatively dumb (with limited or no native features). Although 
most centralized VoIP architectures use MGCP or H.248/Megaco protocols, it 
is also possible to build SIP or H.323 networks in a centralized fashion using 
back-to-back user agents (B2BUAs) or gatekeeper routed call signaling 
(GKRCS), respectively. 

Advocates of centralized VoIP architectures favor this model because it 
centralizes management, provisioning, and call control. It simplifies call 
flows for replicating legacy voice features. And it is easy for legacy voice 
engineers to understand. Critics of centralized architectures claim that it 
stifles innovation of endpoint features and that it will become a hindrance 
when building VoIP services that move beyond legacy voice features. 

Distributed architectures are associated with H.323 and SIP protocols. 
These protocols allow network intelligence to be distributed between 
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endpoints and call-control devices. Intelligence in this instance refers to call 
state, calling features, call routing, provisioning, billing, or any other aspect 
of call handling. The endpoints can be VoIP gateways, IP phones, media 
servers, or any device that can initiate and terminate a VoIP call. The call-
control devices are called gatekeepers in an H.323 network, and proxy or 
redirect servers in an SIP network. 

Advocates of distributed architectures favor this model because of its 
flexibility. It allows VoIP applications to be treated like any other distributed 
IP application, and it allows the flexibility to add intelligence to either 
endpoints or call-control devices, depending on the business and technology 
requirements of the network. Distributed architectures are usually well 
understood by engineers who run IP data networks. Critics of distributed 
architectures commonly point to the existing PSTN infrastructure as the only 
reference model that should be used when trying to replicate legacy voice 
services. They also note that distributed networks tend to be more complex. 

4.3.3 H.323 

 
Figure 4.2  H.323 Networks [11]. 

H.323 was originally created to provide a mechanism for transporting 
multimedia applications over local-area networks. Although H.323 is still 
used by numerous vendors for videoconferencing applications, it has rapidly 
evolved to address the growing needs of VoIP networks. 

H.323 is considered an “umbrella protocol” because it defines all 
aspects of call transmission, from call establishment to capabilities exchange 
to network resource availability. H.323 defines Registration, Admission, and 
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Status Protocol (RAS) protocols for call routing, H.225 protocols for call 
setup, and H.245 protocols for capabilities exchange. 

H.323 is based on the Integrated Services Digital Network (ISDN) 
Q.931 protocol, which allows it to easily interoperate with legacy voice 
networks such as the PSTN or Signaling System 7 (SS7). 

As a protocol used in a distributed architecture, H.323 allows 
companies to build large-scale networks that are scalable and resilient. It 
provides mechanisms for interconnecting with other VoIP networks, and 
supports network intelligence on either the endpoints or the gatekeepers. 

4.3.4 MGCP/H.248/Megaco 

 
Figure 4.3  MGCP/H.248/Megaco Networks [11].  

MGCP and H.248/Megaco were designed to provide an architecture where 
call control and services could be centrally added to a VoIP network. In that 
sense, an architecture using these protocols closely resembles the existing 
PSTN architecture and services. 

MGCP and H.248/Megaco define most aspects of signaling using a 
model called packages. These packages define commonly used functionality, 
such as PSTN signaling, line-side device connectivity, and features such as 
transfer and hold. In addition, Session Definition Protocol (SDP) is used to 
convey capabilities exchange. 

In a centralized architecture, MGCP and H.248/Megaco allow 
companies to build large-scale networks that are scalable and resilient. It 
provides mechanisms for interconnecting with other VoIP networks and for 
adding intelligence and features to the call agent. 
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4.3.5 SIP 

 
Figure 4.4  SIP Networks [11].   

SIP was designed as a multimedia protocol that could take advantage of the 
architecture and messages found in popular Internet applications. By using 
a distributed architecture—with URLs for naming and text-based 
messaging—SIP attempts to take advantage of the Internet model for 
building VoIP networks and applications. In addition to VoIP, SIP is used for 
videoconferencing, instant messaging, fax and other session types. 

As a protocol, SIP only defines how sessions are to be set up and torn 
down. It utilizes other IETF protocols to define other aspects of VoIP and 
multimedia sessions, such as SDP for capabilities exchange, URLs for 
addressing, Domain Name System (DNS) for service location, and Telephony 
Routing over IP (TRIP) for call routing. 

Although the IETF has made great progress defining extensions that 
allow SIP to work with legacy voice networks, the primary motivation behind 
the protocol is to create an environment that supports next-generation 
communication models that utilize the Internet and Internet applications. 

As a protocol used in a distributed architecture, SIP allows companies 
to build large-scale networks that are scalable and resilient. It provides 
mechanisms for interconnecting with other VoIP networks and for adding 
intelligence and new features on either the endpoints or the SIP proxy or 
redirect servers. 
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4.3.6 Interconnecting VoIP Protocols 

VoIP networks continue to be deployed at a rapid pace, and VoIP vendors 
and service providers continue to add new functionality. Because vendor 
support for each protocol differs and companies have varying business 
requirements, it is very likely that VoIP networks will continue to be made up 
of multiple protocols. 

Having various protocols gives customers the flexibility they need to 
connect services from multiple carriers. Using standards, even multiple 
standards, still simplifies deployment of multivendor endpoints and 
increases options for network management and provisioning. 

As companies expand their networks, they are faced with choices 
about how to interconnect segments using differing VoIP protocols. These 
choices often fall into one of three categories: 
• Translation through time-division multiplexing (TDM)—In this model, a 
company uses either TDM equipment or VoIP gateways to translate from one 
protocol domain to another. The benefits of this model are that it can be 
used today. The downside is that it introduces latency into the VoIP network, 
and involves yet another protocol translation (VoIP no. 1 <-> TDM <-> VoIP 
no. 2). This model is usually considered as a short-term solution until IP-
based protocol translators are available. 
• Single protocol architecture—In this model, a company moves all its VoIP 
devices and services to a single protocol, simplifying the network as a whole. 
The downside to this approach is that it might not be possible to migrate 
existing equipment to support the new protocol, a situation that can limit 
the company’s ability to take advantage of some existing services. In 
addition, it limits the potential connectivity to other networks that are using 
other VoIP signaling protocols. 
• Protocol translation—In this model, a company uses IP-based protocol 
translators to interconnect two or more VoIP protocol domains. IP translators 
allow a company to retain the flexibility of using multiple VoIP protocols, do 
not introduce the delay problems that additional TDM interconnections do, 
and do not require a wholesale replacement or swap of existing equipment. 
The downside to this approach is that there is no standard for protocol 
translation, so not all VoIP protocol translators are exactly the same. 
Although the IETF has attempted to define a model for translating H.323 to 
SIP, it involves more than just building a protocol-translation box. 

As shown in Table 4.1, although protocols are somewhat similar, they 
do have some differences. Vendors of protocol translators need in-depth 
knowledge of all the protocols being used in the VoIP network, and they 
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must be aware of how various VoIP components utilize different aspects of 
the protocol. 

Table 4.1  Details of IP Telephony Protocols [11]. 

 

4.4 Fax over IP 

4.4.1 Introduction 

Facsimile transmission presents a major implementation challenge in the 
new packet networks. Voice support is difficult enough, with its own 
stringent requirements for maintaining the quality of service and user 
experience of the PSTN, but fax transmission escalates the problem to a 
higher level. Simply speaking, for the new VoIP networks to succeed, it is 
mandatory to support the legacy facsimile equipment, which attaches to 
POTS service. The installed base of fax equipment is so large that the 
unspoken requirement is for complete support for Group 3 fax at a 
minimum in any service deployment. A large percentage of homes with 
access to the Internet have at least simple PC-based fax capability, and 
as the number of telecommuters grows, this number is expected to 
increase. 

We now explore the hurdles for supporting facsimile in a robust 
manner in a packet network. Let's revisit the PSTN for some of the basics. 
In POTS service, all calls are circuit switched and traverse digital TDM 
facilities between the local exchanges serving the calling and called fax 
terminals. These TDM facilities are extremely reliable and rarely, if ever, 
drop bits of digitized voiceband signals. The robustness of the PSTN 
network allows for reliable end-to-end message handshaking, modem 
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training, setting of equalizer circuits, and nearly error-free fax image 
transmission. If there are line quality issues affecting the analog signals, 
they are mostly between the subscriber's premise, and their respective 
COs. The user experience has been for a fax call to go through on the first 
try, almost all the time. 

In contrast to the simple transport of voiceband data on the PSTN, 
packet networks come with many complexities regarding this 
transmission. Voiceband data is interpreted by machines, and they are far 
less tolerant than the human ear when things are not according to the 
highest quality. This is exactly the issue with fax support over packet 
networks. While the loss of a single packet during a human conversation 
may go unnoticed, the same lost packet during the handshake procedures 
of a fax call can result in a dropped call or lengthy recovery procedures 
with possible drop in speed as the outcome. All this is annoying and 
disturbing to users, especially if the affected call incurs long distance or 
international charges and must be repeated. 

ITU-T Recommendation T.30 defines the procedures for the 
transmission of facsimile over the PSTN, which includes end-to-end 
capabilities negotiation between fax terminals and sending of image data 
encoded in a standard format. Transmission of images for Group 3 fax is 
specified in ITU-T Recommendation T.4. The need for an expedient 
solution to support facsimile in packet networks has resulted in additional 
specifications that preserve a local nature of Group 3 signaling and 
transmission. Local signaling executes between a fax terminal and the 
network equipment to which it connects. This type of network equipment 
is a media gateway that provides analog line connection to a legacy fax 
device or analog telephone with an RJ11 connector. The calling and called 
fax terminals are thus faked into believing they are negotiating fax 
transmission with the other terminal over the circuits and trunks of the 
PSTN. The packet infrastructure on the network side of the gateways is 
then used to transport the image data and re-create fax signaling 
sequences at each gateway toward their local fax terminal. 

There are currently two methods that accomplish this operation and 
both are standards specified by the ITU. Recommendation T.37 specifies 
store and forward, non-real time techniques for sending facsimile with 
legacy equipment connected via a gateway to a packet network. 
Recommendation T.38 specifies a real-time operation which does not use 
voiceband data transport, but instead uses packetized information to 
carry both the handshake sequences and the digitized image data itself 
between the terminals. We discuss both of those techniques in this 
section. 
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Both the real-time and non-real-time methods for facsimile support 
over packet networks have their own benefits and shortcomings, from both a 
technical and an economic perspective. Fax costs can be a significant part of 
the POTS expenses for many corporations. Studies in this area have shown 
that a substantial portion of corporations' annual telecommunications 
budgets is allocated to long distance calls, of which about 40% represent fax 
calls. This is especially true in Asian countries. The availability of two 
methods to send faxes over packet networks has opened a new market in 
business segments, where previously there was no choice with POTS service. 
Both fax transmission techniques are expected to continue to enjoy success 
in the IP networks and find their way into VoIP service offerings as the 
technologies mature and their acceptance in the commercial sector 
increases. 

Fax transmission over IP with a hop on the PSTN can be a difficult 
proposition, because the hybrid nature of the end-to-end network 
precludes the use of a single protocol specification. Pure IP-based 
facsimile in the wide area is still a few years away, and will start 
materializing when the success of IP networks reaches the point of carrier 
interoperability across packet domains. The commercial acceptance of 
packet-mode fax machines thus hinges on the success of VoIP networks to 
support facsimile transport in a compatible and robust manner, offering 
the same user experience as the PSTN. 

The T.38 specification is an example of how interworking between a 
IP-based packet domain and the PSTN can be accomplished to support 
real-time fax. For instance, assume a client on an H.323 or SIP LAN 
segment wants to fax a document to a remote fax terminal of a POTS 
subscriber. Since the media path between the originating endpoint device 
(the calling fax machine) and the gateway to the TDM network is IP-based, 
the challenge becomes how to best map between the requirements of the 
T.30 and T.38 specifications at the network boundary. This must be done 
in a manner that preserves the timing integrity of the end-to-end signaling, 
or the process will not be successful and the fax service will not be robust. 

Let's look now at the details of the most common fax transmission 
methods. The call flow diagram in Figure 4.5 shows a typical error-free fax 
transmission between an auto-calling and an auto-answer terminal, such 
as two PCs, or a PC and a fax machine, or two fax machines. We use this 
diagram as a basis for explaining the basic fax operation and issues. 

A fax call in conventional Group 3 facsimile is completed in five 
phases: 

1. Phase A - Call establishment 
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2. Phase B - Attributes, capabilities, and control signaling 
3. Phase C - Single-page fax transmission 
4. Phase D - End-of-page signaling and multipage notification 
5. Phase E - Call termination 

After dialing the remote fax number, an auto-calling fax terminal plays 
a CNG tone, which is an 1100 Hz tone ON for 0.5 secs and OFF for 3 secs. 
The called terminal answers the phone and plays the CED (Called Station ID) 
tone, which is a 2100 Hz tone with phase reversals, for 4 secs. The called 
station also sends a DIS (Digital Identification Signal) carrying the station 
capabilities and optionally two additional signals, NSF (Non Standard 
Facilities) and CSI (Called Subscriber Identification). NSF is used to identify 
requirements for the stations that are not explicitly covered by the ITU-T T 
series of recommendations. CSI provides the identity of the called 
subscriber in the form of a telephone number. This signaling exchange 
completes the call establishment—Phase A—of the process. 

 
Figure 4.5  Conventional Group 3, T.30 Fax Transmission Call Flow [5]. 

Attributes, capabilities, and control signaling exchange is performed 
using the 300 bps modulation mode of V.21. Messages are preceded by a 
preamble consisting of one second of HDLC flags to condition the line for 
each turnaround. Phase B begins with the calling terminal sending DCS 
(Digital Command Signal) to send configuration data, complete the digital 
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setup, and respond to the DIS command. The TCF (Training Check Field) 
is sent by the sender, and the called station responds with CFR 
(Confirmation to Receive). At that time page transmission is ready to 
begin. The sender sends training flags to turn the line around and begins 
transmission, Phase C, in accordance to ITU-T Recommendation T.4. 

At the end of each page the sender sends post-image handshakes 
(Phase D), which are either EOP (if that was the last page), EOM (End of 
Message), or MPS (MultiPage Signal) if there are multiple pages to send. 
MPS results in re-entering Phase C. If the sending session wishes to return 
to Phase B at the end of a page, it sends an EOM command. An MPS signal 
must be acknowledged by the receiver. This process continues until the 
last page has been transmitted, at which time the sending station 
disconnects by sending a DCN command to the receiver. This terminates 
the fax call. 

There are some immediate considerations if we are to implement a 
packet network that intends to carry voiceband traffic as digitized samples 
of analog signals. The first issue is whether connections between the fax 
station endpoints use compression. If not, and PCM G.711 media 
encoding is specified, the main consideration is to avoid packet loss. Packet 
loss will affect the modulation at the far end when PCM packets are played 
out, and could result in page retransmissions, or worse, dropped calls. 

If compression and perceptual coding are used, then all bets are off 
if we attempt to simply packetize the digitized and compressed analog 
signal to the remote station. Perceptual coding removes the characteristics 
of the original waveform and it cannot be reproduced. Even simple analog 
waveform compression can degrade the signal-to-noise ratio to the point 
where either the connection cannot be reliably established, or not 
established at all. 

4.4.2 Fax over Packet Networks 

The support of fax over packet networks has major business drivers. Fax 
is a major revenue earner for service providers and a major expenditure 
for corporations. More than half of the fax transmissions are long distance 
calls and therefore the desire to reduce costs is great. The number of 
installed fax machines continues to grow. The problem with the fax 
scenario we described in the previous section is that it is a POTS telephone 
call incurring toll charges, just like any voice call. The desire of the 
business sector to reduce the cost of fax has led to advances in packet 
technology to support facsimile transport. 

We briefly mentioned the two ITU-T specifications for fax over packet 
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networks, and we visit them in this section. Recommendation T.37 defines 
procedures for store-and-forward fax transmission over the Internet. The 
functionality provided through this specification is simple facsimile 
transmission with non-real-time requirements. Simply stated, the fax begins 
and ends with a local device emulating Group 3 facsimile operation, and the 
actual transmission of the image to the intended final destination fax 
machine occurs in a second step, a short time later. Recommendation T.38 
on the other hand, defines real-time procedures for fax support over IP 
networks, and this is the standard that has been accepted for enterprise and 
wide area networks. Both standards address legitimate commercial needs 
with slightly different business drivers. We examine the major attributes of 
both, and some major requirements they impose on the underlying packet 
networks. 

4.4.3 Store-and-Forward Fax over IP Networks-T.37 

Recommendation T.37 defines two modes for non-real-time fax, simple 
and full. Simple mode supports plain transmission of data, but 
capabilities negotiation between terminals may not take place and is 
undefined in the specification. All fax terminals must support simple 
mode. Image data is sent in TIFF format, specified in RFC 2301, Profile S 
with Modified Huffman Compression. It supports Group 3 standard and 
fine image resolutions. 

The fundamental element for T.37 fax operation is the Internet Fax 
Gateway, which emulates Group 3 operation toward the attached stations, 
and has a direct connection to a packet network, acting as a host or 
router. 

In Figure 4.6, the Internet Fax Gateway provides the protocol 
mapping between the standard Group 3 fax terminal on one side and the 
IP network on the other. The protocol between the gateway and the fax 
terminal is T.30, thus ensuring complete backward compatibility with the 
legacy fax machine. 

On the network side, the gateway interfaces to the IP network and 
conforms to the requirements of RFC 3201, Profile S. It also conforms to 
RFC 2305 for errors in handling and delivery of the fax, information to 
trace the origin of the fax, ensuring MIME compliance at both ends of the 
IP fax gateways, sending notification to the originator of the fax regarding 
reception problems, and optionally using TIFF profiles for other fax types. 
The gateway must also implement the Simple Mail Transfer Protocol 
(SMTP). The Internet Fax Gateway functionality can be implemented inside 
the fax terminal, thus making it Internet-aware. 
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Figure 4.6  Internet Fax Gateway, Interworking Function [5]. 

The TIFF specification defines the method for describing, storing, 
and interchanging image data, such as facsimile and scanned documents. 
It defines a core set of fields, shown in Figure 4.7, along with the method 
to arrange the image data in a file which includes all the document pages 
in chained fashion. The exact header field definition for the image 
encoding is specified in RFC 2301, "File Format for Internet Fax". 

 
Figure 4.7  Basic TIFF image format [5]. 

Images in both the T.37 simple and full operating modes are sent to 
the remote gateway as MIME-encoded email messages containing the 
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image as the attachment. T.37 full mode adds the requirement to confirm 
that the fax was received properly, and negotiation of the capabilities of 
the fax terminals. Any Internet mail transport protocol can be used in full 
mode to carry the image data. 

Delivery confirmations are returned to the sender as MIME-encoded 
Delivery Status Notifications (DSNs) for gateways, as described in RFC 
1894. Senders and receivers require the use of Message Disposition 
Notifications (MDN), defined in RFC 2298. 

4.4.4 Real-time Internet Fax-T.38 

Store-and-forward fax is a rather primitive approach to support non-real-
time facsimile, with some fairly obvious limitations in functionality. Even 
so, the business side of the argument points to substantial interest for 
this type of service and it is experiencing continuing growth in the 
industry. Several service providers already offer Internet fax, sometimes in 
package deals with other services. 

The alternative to non-real-time fax over IP networks is 
Recommendation T.38. The T.38 protocol gives the "look and feel" of real-
time facsimile by emulating the handshake activities of the T.30 protocol 
on the packet network side. Its basic idea is fax demodulation by a T.38 
gateway at the source, packetization of all relevant handshake exchanges, 
sending of the IP packets across the network, and remodulation of the 
analog line by the receiving T.38 gateway from the information carried in 
the packet data. All this is accomplished with the simplicity of just two 
types of messages (packets), T30_INDICATOR (indicator packets) and 
T_DATA (data packets), which are part of the Internet Fax Protocol (IFP) 
recommendation of the ITU. 

Indicator packets carry information to the far end about the 
presence of a CNG/CED tone, modem modulation training, or preamble 
flags each time the line is turned around. Data packets carry the Phase C 
data and HDLC control frames. Packets may carry one or more HDLC 
control frames, or a complete image. Group 3 facsimile equipments (the 
legacy devices) attach to T.38-compliant gateways and execute the T.30 
protocol in real-time, without modifications. Adherence to the timing 
restrictions of T.30 is thus critical during the handshaking procedures 
between the terminals. 

The IFP allows either TCP or UDP to be used as the transport 
protocol. When TCP is used, the IP payload is simply the TCP header and 
the concatenated indicator or data packet. 
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When UDP is used, the payload consists of a new layer header 
(UDPTL), followed by the concatenated indicator or data packet. The 
UDPTL header is a packet sequence number to account for packets 
arriving via different paths and out of order. The UDPTL payload also 
contains an optional Forward Error Correction (FEC) field to recover from 
bit errors. Also optionally, redundant messages can be included in a 
single UDPTL packet. 

 
Figure 4.8  High-Level IFP/TCP Packet Structure [12]. 

 
Figure 4.9  High-Level UDPTL/IP Packet Structure [12]. 

A simplified block diagram of the message flow under T.38 is shown 
in Figure 4.10. For exact details of the T.38 message types and exchanges, 
ITU-T Recommendation T.38 should be studied. 

Flag sequences are required for every line turnaround and are 
transmitted as indicator (T30_INDICATOR) packets. Training is sent as an 
indicator packet, with the V-type modulation used by the sending terminal. 
This is used to adjust the speed of the terminal, for instance, to switch from 
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sending image data with V.17 modulation to V.21 modulation for control 
sequences. 

The same type of training is generated by the receiving gateway at the 
far end toward the sending fax terminal. The modulation training 
sequences have timing requirements which must be carefully adhered to 
in an end-to-end communication, in order for the presence of the IP 
network between the gateways to be completely transparent to the fax 
application. 

Finally, the Training Check Field (TCF) can be used in one of two 
ways in T.38-compliant networks. For connection-oriented, TCP-based 
implementations, the TCF is generated by the far end gateway toward the 
receiving fax terminal. When UDP is used, the TCF needs to be sent across 
the packet network. The difference is in the decision logic of the speed 
selection. 

The call flow of Figure 4.10 shows the T.30 protocol being executed 
between the calling terminal and its local T.38 gateway. All signal types 
and their timing restrictions must be supported at that interface, 
regardless of what timing constraints may be challenging the gateway on 
the packet network side. The fact is, in the general case, communicating 
T.38 gateways can be located across several network segments, between 
one or more service providers. All the potential issues facing voice 
telephony, such as QoS at the packet level, can happen during a fax call. 

 
Figure 4.10  T.38 High Level Message Flow [5]. 
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4.5 IP Telephony Quality of Service 

4.5.1 Integrated Services & RSVP 

There are various approaches to provide QoS in IP networks. QoS can 
be achieved by managing router queues and by routing traffic around 
congested parts of the network. Two key QoS concepts are the IntServ and 
DiffServ. The IntServ concept is to reserve resources for each flow through 
the network. RSVP was originally designed to be the reservation protocol. 
When an application requests a specific QoS for its data stream, RSVP can 
be used to deliver the request to each router along the path and to maintain 
router state to provide the requested service. RSVP transmits two types of 
Flow Specs conforming to IntServ rules. The traffic specification (Tspec) 
describes the flow, and the service request specification (Rspec) describes the 
service requested under the assumption that the flow adheres to the Tspec. 
Current implementations of IntServ allow a choice of Guaranteed Service or 
Controlled-Load Service. 

There are several reasons for not using IntServ with RSVP for IP 
telephony. Although IntServ with RSVP would work on a private network for 
small amounts of traffic, the large number of voice calls that IP telephony 
service providers carry on their networks would stress an IntServ RSVP 
system. First, the bandwidth required for voice itself is small, and the RSVP 
control traffic would be a significant part of the overall traffic. Second, RSVP 
router code was not designed to support many thousands of simultaneous 
connections per router. 

It should be noted, however, that RSVP is a signaling protocol, and it 
has been proposed for use in contexts other than IntServ. For example,  

 
Figure 4.11  RSVP in hosts and routers [4]. 
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Figure 4.12  RSVP and related protocols [4]. 

RSVP-TE is a constraint-based routing protocol for establishing LSPs 
(Labeled Switched Path) with associated bandwidth and specified paths in an 
MPLS (Multi-Protocol Label Switching) network. RSVP has also been 
proposed as the call admission control mechanism for VoIP in differentiated 
services networks. 
 

4.5.2 Differentiated Services 

Since IntServ with RSVP does not scale well to support many thousands of 
simultaneous connections, the IETF has developed a simpler framework and 
architecture to support DiffServ. The architecture achieves scalability by 
aggregating traffic into classifications that are conveyed by means of IP-layer 
packet marking using the DS field in IPv4 or IPv6 headers. Sophisticated 
classification, marking, policing, and shaping operations need only be 
implemented at network boundaries. Service provisioning policies allocate 
network resources to traffic streams by marking and conditioning packets as 
they enter a differentiated services-capable network, in which the packets 
receive a particular PHB (Per Hop Behavior) based on the value of the DS 
field. 

The primary goal of differentiated services is to allow different levels of 
service to be provided for traffic streams on a common network 
infrastructure. A variety of resource management techniques may be used to 
achieve this, but the end result will be that some packets will receive 
different (e.g., better) service than others. This will, for example, allow service 
providers to offer a real-time service giving priority to the use of bandwidth 
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and router queues, up to the configured amount of capacity allocated to real-
time traffic. 

Despite the term “differentiated services,” the IETF DiffServ working 
group undertook to define standards that have more generality than specific 
services. The reason is that if the IETF were to define new standard services, 
everyone would have to agree on what constitutes a useful service and every 
router would have to implement the mechanisms to support it. To deploy 
that new service, you would have to upgrade the entire Internet. Since a 
router has only a few functions, it makes more sense to standardize 
forwarding behavior (“send this packet first” or “drop this packet last”). So 
the DiffServ working group first defined PHBs, which could be combined 
with rules to create services. 

An important requirement is scalability, since the IETF intended 
differentiated services to be deployed in very large networks. To achieve 
scalability, the DiffServ architecture prescribes treatment for aggregated 
traffic rather than microflows and forces much of the complexity out of the 
core of the network into the edge devices, which process lower volumes of 
traffic and lesser numbers of flows. 

The DiffServ architecture is based on a simple model where packets 
entering a network are classified and possibly conditioned at the boundaries 
of the network, and then assigned to different behavior aggregates. Each 
behavior is identified by a single DS codepoint. Within the core of the 
network, packets are forwarded according to the PHB associated with the DS 
codepoint. 

The appeal of DiffServ is that it is relatively simple (compared to 
IntServ), yet provides applications like VoIP some improvement in 
performance compared to “best-effort” IP networks. However, DiffServ relies 
on ample network capacity and makes use of standard routing protocols that 
make no attempt to use the network efficiently. DiffServ has no topology-
aware admission control mechanism. The IETF DiffServWorking Group has 
not recommended a mechanism for rejecting additional VoIP calls if 
accepting them would degrade the quality of calls in progress. 

4.5.3 MPLS-Based QoS  

For several decades, traffic engineering and automated rerouting of 
telephone traffic have increased the efficiency and reliability of the PSTN. 
Frame relay and ATM also offer source routing capabilities that enable traffic 
engineering. However, IP networks have relied on destination-based routing 
protocols that send all the packets over the shortest path, without regard to 
the utilization of the links comprising that path. In some cases, links can be 
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congested by traffic that could be carried on other paths comprised of 
underutilized links. It is possible to design an IP network to run on top of a 
frame relay or ATM (“Layer 2”) network, providing some traffic engineering 
features, but this approach adds cost and operational complexity. 

MPLS offers IP networks the capability to provide traffic engineering as 
well as a differentiated services approach to voice quality. MPLS separates 
routing from forwarding, using label swapping as the forwarding mechanism. 
The physical manifestation of MPLS is the Label Switching Router (LSR). 
LSRs perform the routing function in advance by creating LSPs connecting 
edge routers. The edge router (an LSR) attaches short (four-byte) labels to 
packets. Each LSR along the LSP swaps the label and passes it along to the 
next LSR. The last LSR on the LSP removes the label and treats the packet 
as a normal IP packet. 

Differentiated services can be combined with MPLS to map DiffServ 
Behavior Aggregates onto LSPs. QoS policies can be designated for particular 
paths. More specifically, the EXP field of the MPLS label can be set so that 
each label switch/router in the path knows to give the voice packets highest 
priority, up to the configured maximum bandwidth for voice on a particular 
link. When the high-priority bandwidth is not needed for voice, it can be 
used for lower priority classes of traffic. 

DiffServ and MPLS DiffServ are implemented independently of the 
routing computation. MPLS-TE computes routes for aggregates across all 
classes and performs admission control over the entire LSP bandwidth. 
MPLS-TE and MPLS DiffServ can be used at the same time. Alternatively, 
DiffServ can be combined with traffic engineering to establish separate 
tunnels for different classes. DS-TE makes MPLS-TE aware of DiffServ, so 
that one can establish separate LSPs for different classes, taking into 
account the bandwidth available to each class. So, for example, a separate 
LSP could be established for voice, and that LSP could be given higher 
priority than other LSPs, but the amount of voice traffic on a link could be 
limited to a certain percentage of the total link bandwidth. This capability is 
currently being standardized by the IETF Traffic Engineering Working 
Group. 

Voice DS-TE tunnels can be based on a delay metric or a bandwidth 
metric. Combining DS-TE with DiffServ over MPLS allows QoS for VoIP with 
the capability of fast reroute if a link or node failure occurs. DiffServ can 
guarantee that a specified amount of voice bandwidth is available on each 
link in a network. DS-TE routing and admission control can create a 
guaranteed bandwidth tunnel that has the required bandwidth in the 
highest priority queue on every link. Service conditioning at the edge can 
ensure that the aggregate VoIP traffic directed onto the guaranteed 
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bandwidth tunnel is less than the capacity of the tunnel. This allows a tight 
SLA with admission control without overprovisioning the network. 

A VoIP network designer can choose DiffServ, MPLS-TE plus DiffServ, 
or DS-TE according to the economics of the situation. If VoIP is to be a small 
portion of the total traffic, DiffServ or MPLS-TE plus DiffServ may be 
sufficient. DS-TE promises more efficient use of an IP network carrying a 
large proportion of VoIP traffic, with perhaps more operational complexity. 

4.6 IP Telephony Trends and Economics 

Although VoIP calling is used for billions of billed minutes each year, it still 
represents a very small percentage of the market—less than 5% overall. 
According to Telegeography (www.telegeography.com), 40% of VoIP traffic 
originates in Asia and terminates in North America or Europe; 30% travels 
between North America and Latin America; one-third of U.S. international 
VoIP traffic goes to Mexico, with future volume increases predicted for calling 
to China, Brazil, and India, and the rest moves among the U.S., Asia Pacific, 
and Western European regions. It is important to closely examine who will be 
using this and what carriers or operators will be deploying these technologies. 
Probe Research (www.proberesearch.com) believes that up to 2002, 6% of all 
voice lines were VoIP. This is still rather minor, given the fact that some have 
been saying that VoIP would have replaced circuit-switched calling up to the 
year 2002. Piper Jaffray (www.piperjaffray.com) reports that minutes of 
communication services traveling over IP telephony networks will grow from 
an anticipated 70 billion minutes and 6% of all the PSTN traffic in the year 
2003 to over a trillion minutes by the year 2006. In the United States alone, 
the PSTN is handling some 3.6 trillion minutes of traffic monthly. 

Although VoIP has a very important place in telecommunications, it's 
important to realize that it is not yet taking over the traditional circuit-
switched approach to accommodating voice telephony. The exciting future of 
VoIP lies in advanced and interesting new applications, an environment 
where voice is just one of the information streams comprising a rich media 
application. Many expect that sales of VoIP equipment will grow rapidly in 
the coming years. Part of the reason for this growth is that the network-
specific cost for VoIP on dedicated networks is quite a bit lower than the cost 
of calls on circuit-switched networks—about US 1.1 cents per minute as 
compared with US 1.7 cents per minute. Using VoIP to carry telephony 
traffic greatly reduces the cost of the infrastructure for the provider, but at 
the expense of possibly not being able to maintain QoS. Potential savings are 
even greater if VoIP is implemented as an adjunct to data network. 
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Another factor encouraging customers to examine VoIP is the use of 
shared networks. Because IP emphasizes logical rather than physical 
connections, it's easier for multiple carriers to coexist on a single network. 
This encourages cooperative sharing of interconnected networks, structured 
as anything from sale of wholesale circuits to real-time capacity exchanges. 
Also, VoIP can reduce the barriers to entry in this competitive data 
communications world. New companies can enter the market without the 
huge fixed costs that are normally associated with the traditional circuit-
switched network models. Furthermore, because IP telephony will enable 
new forms of competition, there will be pressure to better align government-
controlled prices with underlying service costs. International VoIP services 
are already priced well below the official rates and some of VoIP's appeal is 
that it eliminates the access charges interexchange carriers normally have to 
pay to interconnect to the local exchange carrier. In the United States, these 
charges range from US 2 cents to US 5 cents per minute. 

4.6.1 Fax over IP 

Most companies are unaware of just how much time and money is lost by 
traditional faxing. The average Fortune 500 company spends $40 million per 
year on phone service, 40 percent of which goes to faxing, according to a 
Gallop/Pitney Bowes survey. By switching to emerging fax over IP, 
companies can save as much as 70 percent on their long distance phone bill, 
while gaining some important new features, says Maury Kauffman, 
managing partner of The Kauffman Group, a fax technology consulting firm 
in Vorhees, NJ. And that's not all. When calculating the full benefits of fax 
over IP, companies must factor in the cost of fax machines (which can run as 
high as $2,000 to $3,000 per machine); the cost of operating and 
maintaining those machines; and wasted labor each time an employee walks 
to the fax machine, waits for the fax to go through and returns to work. For 
larger companies using fax servers, the cost can be enormous. Companies 
can eliminate all of this by switching to fax over IP. 

Fax over IP can also help companies cut down on the cost of other 
delivery methods, such as mail, overnight delivery and courier services. Fax 
over IP also solves the problem of mobile professionals who cannot receive 
faxes when they are out of the office. Users simply create a document in a 
program like Microsoft Word, click on file/print and then choose the 
installed fax-configured printer. After entering the appropriate fax number, 
users can send the document right from their desktops. The technologies 
allow users to send and receive fax documents via desktop computers. 
According to PSINet, users can save as much as 25 to 50 percent on long-
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distance charges and reduce spending by eliminating the need for additional 
phone lines, modems, fax equipment and maintenance.  

The fax over IP market shows no signs of slowing as more and more 
companies turn to the Net to transmit documents. According to research by 
The Gartner Group, fax over IP reached 5.6 billion pages carried in 2001, up 
from 44 million pages in 1997. IDC estimates that fax transmissions 
represented an $83 billion dollar market in 1998 and grew to $90 billion in 
2000.  There is a wide range of numbers describing the current size of the IP 
telephony market and the growth of the market over the next three to five 
years. While the specific projections vary, even the most conservative 
analysts are predicting phenomenal growth. The numbers are summarized 
below. 

 
Figure 4.13  Piper-Jaffray, IP Telephony, Driving the Open Communications Revolution [13]. 
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Chapter 5 
SIP: Session Initiation Protocol 
 
 
 
 
 
 
 

5.1 Introduction 

In this chapter, the Session Initiation Protocol (SIP) is treated thoroughly. In 
the next section, an introduction of the protocol is given. In Section 3, SIP 
user agents, gateways and the 3 types of servers are discussed. A brief 
introduction of SIP request and response messages and headers is given in 
Section 4. Session Description Protocol (SDP), a companion protocol to SIP, 
is treated next. An almost complete introduction to SIP programming is given 
in Section 6. SIP and T.38 interactions are explained briefly in Section 7. 
And we conclude the chapter with introduction of the materials for further 
studying. 

5.2 Introducing SIP 

5.2.1 A Brief History of SIP 

SIP was originally developed by the IETF Multi-Party Multimedia 
Session Control Working Group, known as MMUSIC. Version 1.0 was 
submitted as an Internet-Draft in 1997. Significant changes were made 
to the protocol and resulted in a second version, version 2.0, which was 
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submitted as an Internet-Draft in 1998. The protocol achieved Proposed 
Standard status in March 1999 and was published as RFC 2543 in April 
1999. In September 1999, the SIP working group was established by the 
IETF to meet the growing interest in the protocol. An Internet-Draft 
containing bug fixes and clarifications to SIP was submitted in July 
2000, referred to as RFC 2543 "bis". In June 2002, RFC 3261 was 
published which defined the latest SIP specification and made RFC 2543 
obsolete. To advance from Proposed Standard to Draft Standard, a 
protocol must have multiple independent interworking implementations 
and limited operational experience. To this end, forums of 
interoperability tests have been organized by the SIP working group. The 
final level, Standard, is achieved after operational success has been 
demonstrated. 

SIP incorporates elements of two widely used Internet protocols: HTTP 
(Hyper Text Transport Protocol) used for web browsing and SMTP (Simple 
Mail Transport Protocol) used for e-mail. From HTTP, SIP borrowed a client-
server design and the use of uniform resource locators (URLs). From 
SMTP, SIP borrowed a text-encoding scheme and header style. For example, 
SIP reuses SMTP headers such as To, From, Date and Subject. 

In keeping with its philosophy of "one problem, one protocol", the 
IETF designed SIP to be a pure signaling protocol. SIP uses other IETF 
protocols for transport, media transport, and media description. 

5.2.2 Places Where SIP is Discussed 

The main forum of SIP standardization is in the Internet Engineering Task 
Force (IETF), which is the primary standards body for Internet protocols. The 
IETF has set up the following three working groups to work on the protocol 
and its application: 
• The SIP working group covers enhancements to the core protocol. 
• The SIPPING working group covers applications of SIP. 
• The SIMPLE working group covers Instant Messaging and Presence 
applications of SIP. 

The distinction between these groups is that the SIPPING and SIMPLE 
working groups discuss applications of SIP and decide how SIP should be 
used in each of them. If they determine that the requirements of a particular 
application cannot be handled by the core protocol, then these requirements 
are passed to the SIP working group for a solution. This enables the SIP 
working group to maintain control over extensions to the protocol, while 
limiting the scope of its discussions. 
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Other IETF working groups whose areas touch on SIP include the 
following: 
• IPTEL (Internet routing of telephone calls) 
• MMUSIC (responsible for Session Descriptor Protocol (SDP), which SIP uses 
to describe its media sessions) 
• MIDCOM (Middlebox communication – firewall and NAT traversal) 
• SPIRITS (PSTN – Internet telephony interoperation) 
• ENUM (Internet use of traditional PSTN phone numbers) 

Several industry groups are also discussing how to standardize the 
use of SIP in their environment. These include: 
• Packetcable (www.packetcable.com), who are using SIP for telephony over 
cable 
• 3GPP (www.3gpp.org), who have adopted SIP for 3G mobile 
• Multi-service Switching Forum (MSF) (www.msforum.org), which has 
defined SIP-T conformance levels and is now working to ensure that SIP can 
be deployed in large scale PSTN networks. 
• ETSI TIPHON (Telecommunications and Internet Protocol Harmonization 
Over Networks) (www.etsi.org), who are working to ensure that SIP is 
suitable for deployable telephony applications. 

There is a continual conflict between the requirements of the 
traditional telephone providers, who need to provide an end-to-end billable 
solution that meets their regulatory requirements, and the less controlled 
environment of the Internet. This is resulting in concern over the 
interoperability of the different flavors of SIP, including 3GPP SIP, 
PacketCable SIP, and IETF SIP, and discussions are ongoing to ensure that 
they all work together. 

There is a separate initiative to standardize the programming 
interfaces to SIP and other telephony protocols. This work covers the 
following interfaces: 
• JAIN (java.sun.com/products/jain) – Java APIs to SIP and other Next 
Generation telecom protocols. 
• Parlay (www.parlay.org) – High-level, protocol independent APIs that allow 
the development of telecommunications applications that are independent of 
the underlying network. 
• Call Processing Language (CPL) - XML-based language that can be used to 
describe and control Internet telephony services (draft-ietf-iptel-cpl-08). 
• Common Gateway Interface (CGI) - HTTP CGI compatible extensions to 
providing SIP services on an SIP server (RFC 3050) 

These standardized interfaces help the development of SIP applications 
that are not tied to a specific implementation of the protocol. This makes the 
resulting application more portable and reduces the developer’s dependence 
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on one supplier, but they can add a processing overhead that may reduce 
the overall efficiency of the system. The protocol independent interfaces also 
limit the ability to exploit the advantages of a particular protocol. 

5.2.3 Message Transport 

SIP is an application layer protocol in the Internet multimedia protocol 
stack. It can use either TCP or UDP for transport layer, both of which use 
IP for the Internet layer. How an SIP message is transported using these 
two protocols will be described in the following sections. 

UDP Transport 

When using UDP, each SIP request or response message is usually carried 
by a single UDP datagram or packet. Most SIP messages easily fit in a 
single datagram. For a particularly large message body, there is a compact 
form of SIP that saves space in representing some headers with a single 
character. Figure 5.1 shows an SIP BYE request exchange during an 
established SIP session using UDP. 

The source port is chosen from a pool of available port numbers 
(above 49172), or sometimes the default SIP port of 5060 is used. The lack of 
hand-shaking or acknowledgment in UDP transport means that a datagram 
could be lost and an SIP message along with it. The checksum, however, 
enables UDP to discard corrupt datagrams, allowing SIP to assume that a  

 

Figure 5.1  Transmission of SIP messages using TCP and UDP [14]. 
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received message is complete and error-free. The reply is also sent to port 
5060, or the port number listed in the top via header. 

TCP Transport 

TCP provides a reliable transport layer, but at a cost of complexity and 
transmission delay over the network. The use of TCP for transport in an 
SIP message exchange is also shown in Figure 5.1. This example shows an 
INVITE sent by a user agent at 100.101.102.103 to a type of SIP server 
called a "redirect server" at 200.201.202.203. An SIP redirect server does 
not forward INVITE requests like a proxy, but looks up the destination 
address and instead returns that address in a redirection class (3xx) 
response. The 302 M o v e d  T e m p o r a r i l y  response is acknowledged by 
the user agent with an ACK message. Not shown in this figure is the next 
step, where the INVITE would be re-sent to the address returned by the 
redirect server. The details of the message exchanges are not important for 
the moment. These will be clearer in the coming sections. 

As in the UDP example, the "well-known" SIP port number of 5060 is 
chosen for the destination port, and the source port is chosen from an 
available pool of port numbers. Before the message can be sent, however, 
the TCP connection must be opened between the two end-points. This 
transport layer datagram exchange is shown in Figure 5.1 as a single arrow, 
but it is actually a three-way handshake between the end-points. Once the 
connection is established, the messages are sent in the stream. The 
Content-Length header is critical when TCP is used to transport SIP, since 
it is used to find the end of one message and the start of the next. 

The 302 M o v e d  T e m p o r a r i l y  response is sent in the stream in the 
opposite direction. The acknowledgment ACK also is sent in the TCP stream. 
Because this concludes the SIP session, the connection is then closed. The 
connection must stay up until the call is established. After that, it can be 
safely closed without ending the media session, The TCP connection would 
then need to be reopened to terminate the session with a BYE request. 

5.3 SIP Clients and Servers 

5.3.1 SIP User Agents 

An SIP-enabled end-device is called an SIP user agent (UA). The main 
purpose of SIP is to enable sessions to be established between user 
agents. As the name implies, a user agent takes direction or input from a 
user and acts as an agent on their behalf to set up and tear down media 
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sessions with other user agents. In most cases, the user will be a human, 
but the user could be another protocol, as in the case of a gateway 
described in the next section. A user agent must be capable of 
establishing a media session with another user agent. Since SIP may be 
used with any transport protocol, there is no requirement that a UA 
must support either TCP or UDP for message transport. The standard 
states, however, that a UA should support both TCP and UDP. 

A UA must maintain state on calls that it initiates or participates in. 
A minimum call state set includes the local and remote URL, Call-ID, 
local and remote CSeq headers along with any state information 
necessary for the media. This information is used to store the call leg and 
for reliability. The remote CSeq storage is necessary to distinguish 
between a re-INVITE and a retransmission. A re-INVITE is used to change 
the session parameters of an existing or pending call. It uses the same 
Call-ID, but the CSeq is incremented because it is a new request. A 
retransmitted INVITE will contain the same Call-ID and CSeq as a previous 
INVITE.  Even after a call has been terminated, call state must be 
maintained by a user agent for at least 32 seconds in case of lost 
messages in the call tear-down. 

A minimum user agent implementation includes support of the INVITE 
and ACK methods. Although not required to understand every response 
code defined, a minimal implementation must be able to interpret any 
unknown response based on the class (first digit of the number) of the 
response.  

The types of user agents defined in the standard include minimum, 
basic, redirection, firewall friendly, negotiation, and authentication. 
These are detailed in Table 5.1. A user agent server responds to an 
unsupported request with a 501  No t  Imp l emen t ed  response. 

Most SIP devices support much more than the minimum 
implementation, and often include support for authentication. An SIP 
user agent contains both a client application and a server application. 
The two parts are user agent clients (UAC) and user agent servers (UAS). 
The UAC initiates requests while the UAS generates responses. During a 
session, a user agent will usually operate as both a UAC and a UAS. 

An SIP user agent must also support SDP for media description. 
Other types of media descriptions can be used in bodies, but SDP 
support is mandatory. 
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Table 5.1  User Agent Types [14]. 

 

5 .3 .2  SIP Gateways 
 

An SIP gateway is an application that interfaces an SIP network to a 
network utilizing another signaling protocol. In terms of the SIP protocol, a 
gateway is just a special type of user agent, where the user agent acts on 
behalf of another protocol rather than a human. A gateway terminates the 
SIP signaling path and can also terminate the media path, although this is 
not always the case. For example, an SIP to H.323 gateway terminates the 
SIP signaling path and converts the signaling to H.323, but the SIP user 
agent and H.323 terminal can exchange RTP media information directly with 
each other without going through the gateway. 

A Public Switched Telephone Network (PSTN) gateway terminates 
both the signaling and media paths. SIP can be translated into common 
PSTN protocols such as Integrated Services Digital Network (ISDN), ISDN 
User Part (ISUP), and other Circuit Associated Signaling (CAS) protocols. 
A PSTN gateway also converts the RTP media stream in the IP network 
into a standard telephony trunk or line. The conversion of signaling and 
media paths allows calling to and from the PSTN using SIP.  

Figure 5.2 shows an SIP network connected via gateways with the 
PSTN and a H.323 network. In the figure, the SIP network, PSTN network, 
and H.323 networks are shown as clouds, which obscure the underlying 
details. Shown connecting to the SIP cloud are SIP IP telephones, SIP-
enabled PCs, and corporate SIP gateways with attached telephones. The 
clouds are connected by gateways. Shown attached to the H.323 network are 
H.323 terminals and H.323-enabled PCs. The PSTN cloud connects to 
ordinary analog telephones, digital ISDN telephones, and corporate private 
branch exchanges (PBXs). PBXs connect to the PSTN using shared trunks  
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Figure 5.2  SIP Network with Gateways [14]. 

and provide line interfaces for either analog or digital telephones. 
Gateways are sometimes decomposed into a media gateway (MG) 

and a media gateway controller (MGC). An MGC is sometimes called a 
call agent because it manages call control protocols (signaling), while the 
MG manages the media connection. This decomposition is transparent to 
SIP, and the protocols used to decompose a gateway are not described 
here. 

Another difference between a user agent and a gateway is the 
number of users supported. While a user agent typically supports a single 
user, a gateway can support hundreds or thousands of users. A PSTN 
gateway could support a large corporate customer, or an entire 
geographic area. As a result, a gateway does not REGISTER every user it 
supports in the same way that a user agent might. Instead, a non-SIP 
protocol can be used to inform proxies about gateways and assist in 
routing. One protocol that has been proposed for this is the 
Telecommunications Routing over IP (TRIP) protocol. 

5.3.3 SIP Servers 

SIP servers are applications that accept SIP requests and respond to 
them. An SIP server should not be confused with a user agent server or the 
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client-server nature of the protocol, which describe operation in terms of 
clients (originators of requests) and servers (originators of responses to 
requests). An SIP server is a different type of entity. The types of SIP 
servers discussed in this section are logical entities. Actual SIP server 
implementations may contain a number of server types, or may operate as 
a different type of server under different conditions. Because servers 
provide services and features to user agents, they must support both TCP 
and UDP for transport. Figure 5.3 shows the interaction of user agents, 
servers, and a location service. Note that the protocol used between a 
server and the location service or database is not in general SIP and is not 
discussed here. 

 
Figure 5.3  SIP user agent, server, and location service interaction [14]. 

Proxy Servers 

An SIP proxy server that receives an SIP request from a user agent acts 
on behalf of the user agent in forwarding or responding to the request. A 
proxy server typically has access to a database or a location service to aid it 
in processing the request (determining the next hop). The interface between 
the proxy and the location service is not defined by the SIP protocol. A proxy 
can use any number of types of databases to aid in processing a request. 
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Databases could contain SIP registrations, or any other type of information 
about where a user is located. 

A proxy server is different from a user agent or gateway in two key 
ways: 

1. A proxy server does not issue a request; it only responds to 
requests from a user agent. (A CANCEL request is the only exception 
to this rule.) 
2. A proxy server has no media capabilities. 

A proxy server can be either stateless or stateful. A stateless proxy 
server processes each SIP request or response based solely on the message 
contents. Once the message has been parsed, processed, and forwarded or 
responded to, no information about the message is stored—no call leg 
information is stored. A stateless proxy never retransmits a message, and 
does not use any SIP timers. A stateless proxy has no memory of any 
requests or responses it has sent or received. A stateless proxy is still 
capable of detecting message looping since SIP uses a stateless method to 
implement loop detection using v i a  headers. 

A stateful proxy server keeps track of requests and responses 
received in the past and uses that information in processing future 
requests and responses. For example, a stateful proxy server starts a timer 
when a request is forwarded. If no response to the request is received 
within the timer period, the proxy will retransmit the request, relieving the 
user agent of this task. Also, a stateful proxy can require user agent 
authentication. 

Redirect Servers 

A redirect server is introduced as a type of SIP server that responds to, 
but does not forward requests. Like a proxy server, a redirect server uses 
a database or location service to look up a user. The location information, 
however, is sent back to the caller in a redirection class response, which 
concludes the transaction. 

Registration Servers 

A registration server accepts SIP REGISTER requests; all other requests 
receive a 501 Not Implemented response. The contact information from 
the request is then made available to other SIP servers within the same 
administrative domain, such as proxies and redirect servers. In a 
registration request, the To header contains the name of the resource 
being registered, and the Contact headers contain the alternative 
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addresses or aliases. 
Registration servers usually require the registering user agent to be 

authenticated so that incoming calls can not be hijacked by an unauthorized 
user. This could be accomplished by an unauthorized user registering 
someone else's SIP URL to point to their own phone. Incoming calls to that 
URL would then ring the wrong phone. Depending on the headers present, a 
REGISTER request can be used by a user agent to retrieve a list of current 
registrations, clear all registrations, or add a registration URL to the list. 

5.4 SIP Request and Response Messages and Headers 

5.4.1 SIP Request Messages 

This section explains the types of SIP requests called methods. Six are 
described in the SIP specification document. Two more methods are work 
items of the SIP working group. Other proposed methods are still in the 
early stages of development, or have not yet achieved working group 
consensus. 

SIP requests or methods are considered "verbs" in the protocol, since 
they request a specific action to be taken by another user agent or proxy 
server. 

The INVITE ,  REGISTER,  BYE,  ACK,  CANCEL,  and 
OPTIONS methods are the original six methods in version 2.0 of SIP. The 
INFO and PRACK methods are the subsequent additions. 

A proxy does not need to understand a request method in order to 
forward the request. A proxy treats an unknown method as if it were an 
OPT IONS ;  that is, it forwards the request to the destination if it can. 
This allows new features and methods useful for user agents to be 
introduced without requiring support from proxies that may be in the 
middle. A user agent receiving a method it does not support replies with a 
501 Not Implemented response. 

5.4.2 SIP Response Messages 

This section covers the types of SIP response messages. An SIP response is a 
message generated by a UAS or an SIP server to reply to a request generated 
by a UAC. A response may contain additional headers containing 
information needed by the UAC. Or, it may be a simple acknowledgement to 
prevent retransmissions of the request by the UAC. Many responses direct 
the UAC to take specific additional steps. 
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There are six classes of SIP responses. The first five classes were 
borrowed from HTTP; the sixth was created for SIP. The classes are shown in 
Table 5.2. 

If a particular SIP response code is not understood by a UAC, it must 
be interpreted by the class of the response. For example, an unknown 599 
S e r v e r  Unp lugged  response must be interpreted by a user agent as a 
500 S e r v e r  F a i l u r e  response. The reason phrase is for human 
consumption only—the SIP protocol uses only the response code in 
determining behavior. The reason phrases listed here are the suggested ones 
from the standard document. They can be used to convey more information, 
especially in failure class responses—the phrase is likely to be displayed to 
the user. Response codes in the range x00-x79  were borrowed from HTTP, 
perhaps with a slightly different reason phrase. New response codes 
created for SIP begin at x80 to avoid conflicts with future HTTP response 
codes. 

Table 5.2  SIP Response Classes [14]. 

 

5.4.3 SIP Headers 

This section describes the headers present in SIP messages. There are four 
types of SIP headers: general, request, response, and entity. SIP headers in 
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most cases follow the same rules as HTTP headers. Headers are defined as 
header: field where header is the case-insensitive token used to represent 
the header, and field is the case-insensitive set of tokens that contain the 
information. Header fields can continue over multiple lines as long as the 
line begins with at least one space or horizontal tab character. Unrecognized 
headers are ignored by proxies. Many common SIP headers have a compact 
form, where the header name is denoted by a single lower-case character. 

Headers can be either end-to-end or hop-by-hop. Hop-by-hop headers 
are the only ones that a proxy may insert, or with a few exceptions, modify. A 
proxy should never change the header order. Because SIP typically involves 
end-to-end control, most headers are end-to-end. 

General headers: The set of general headers includes all of the 
required headers in an SIP message. General headers can be present in both 
requests and responses. These headers are created by user agents and 
cannot be modified by proxies, with a few exceptions. The general headers 
are: Call-ID, Contact, CSeq, Date, Encryption, From, Organization, Retry-
After, Subject, Supported, Timestamp, To, User Agent, Via. 

Request headers: They are added to a request by a UAC to modify or 
give additional information about the request. The request headers are: 
Accept, Accept-Contact, Accept-Encoding, Accept-Language, Authorization, 

Hide, In-Reply-To, Max-Forwards, Priority, Proxy-Authorization, Proxy-

Require, Record-Route, Reject-Contact, Request-Disposition, Require, 

Response-Key, Route, RAck, Session-Expires. 
Response headers: They are added to a response by a UAS or SIP 

server to give more information than just the response code and reason 
phrase. They are generally not added to a request. The response headers are: 
Proxy-Authenticate, Server, Unsupported, Warning, WWW-Authenticate, RSeq. 

Entity headers: They are used to provide additional information about 
the message body or resource requested. This term comes from HTTP where 
it has a more specific meaning. In SIP, “entity” and “message body” are used 
interchangeably. The entity headers are: Allow, Content-Encoding, Content-
Disposition, Content-Length, Content-Type, Expires, MIME-Version.   

5.5 SDP: A Companion Protocol 

The Session Description Protocol, defined by RFC 2327, was developed by 
the IETF MMUSIC working group. It is more like a description syntax than 
a protocol in that it does not provide a full-range media negotiation 
capability. The original purpose of SDP was to describe multicast sessions 
set up over the Internet's multicast backbone, the MBONE. The first 
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application of SDP was by the experimental Session Announcement 
Protocol (SAP) used to post and retrieve announcements of MBONE 
sessions. 

An SAP message carries an SDP message body, and was the template 
for SIP’s use of SDP. Even though it was designed for multicast, SDP has 
been applied to the more general problem of describing general multimedia 
sessions established using SIP. 

SDP contains the following information about the media session: 

• IP Address (IPv4 address or host name); 
• Port number (used by UDP or TCP for transport); 
• Media type (audio, video, fax, interactive whiteboard, etc.); 

• Media encoding scheme (PCM A-Law, MPEG II video, etc.).  
 
In addition, SDP contains information about the following: 

• Subject of the session; 
• Start and stop times; 
• Contact information about the session. 

Like SIP, SDP uses text coding. An SDP message is composed of a 
series of lines, called fields, whose names are abbreviated by a single lower-
case letter, and are in a required order to simplify parsing. The set of SDP 
fields is shown in Table 5.3. 

SDP was not designed to be easily extensible, and parsing rules are 
strict. The only way to extend or add new capabilities to SDP is to define a 
new attribute type. However, unknown attribute types can be silently 
ignored. An SDP parser must not ignore an unknown field, a missing 
mandatory field, or an out-of-sequence line. 

5.5.1 Use of SDP in SIP 

The default message body type in SIP is application/sdp. The calling party 
lists the media capabilities that they are willing to receive in SDP in either 
an INVITE or in an ACK.  The called party lists their media capabilities in the 
200 OK response to the INVITE. 

Because SDP was developed with scheduled multicast sessions in 
mind, many of the fields have little or no meaning in the context of dynamic 
sessions established using SIP. In order to maintain compatibility with the 
SDP protocol, however, all required fields are included. A typical SIP use of 
SDP includes the version, origin, subject, time, connection, and one or 
more media and attribute fields. The origin, subject, and time fields are not  
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Table 5.3  SDP Field List in Their Required Order [14]. 

 

used by SIP but are included for compatibility. In the SDP standard, the 
subject field is a required field and must contain at least one character, 
suggested to be s =- if there is no subject. The SIP standard, however, allows 
the subject field to be omitted for two-party sessions. The time field is 
usually set to t = 0 0. 

SIP uses the connection, media, and attribute fields to set up sessions 
between user agents. Because the type of media session and codec to be 
used are part of the connection negotiation, SIP can use SDP to specify 
multiple alternative media types and to selectively accept or decline those 
media types. When multiple media codecs are listed, the caller and called 
party’s media fields must be aligned—that is, there must be the same 
number, and they must be listed in the same order. A media stream is 
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declined by setting the port number to zero for the corresponding media field 
in the SDP response. 

Table 5.4  SDP Attribute values [14]. 

 

5.6 SIP Programming Services 

SIP's intimate association with all things Internet establishes telephony as 
part of a continuum of Internet media options. Its similarities with HTTP and 
SMTP and its text-based format mean that SIP is familiar to web developers. 
In order to develop services, programmers need APIs. There have been many 
advances in this area of SIP, resulting in numerous new interfaces. 
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5.6.1 CPL (Call Processing Language)  

This was the first API developed for SIP. Strictly speaking, it is not really an 
API at all, but rather an XML-based scripting language for describing and 
controlling call services. It is designed to be implemented on either network 
servers or user agent servers and is meant to be simple, extensible, easily 
edited by graphical clients, and independent of operating system or signaling 
protocol. 

CPL is engineered for end-user service creation: a CPL interpreter is 
very lightweight and a server can easily parse and validate a CPL, guarding 
against malicious behavior. It is suitable for running on a server where users 
may not be allowed to execute arbitrary programs, as it has no variables, 
loops, or ability to run external programs. It has primitives for making 
decisions and taking actions based on call properties, such as time of day, 
caller, called party etc.  

5.6.2 SIP-CGI 

In the World Wide Web, the Common Gateway Interface (CGI) has served as 
a popular means of programming web services. CGI scripts have been the 
initial mechanism to make websites interact with databases and other 
applications. Due to the similarities between the SIP and HTTP, CGI is a 
good candidate for service creation in an SIP environment. 

Like HTTP CGI, an SIP CGI script resides in the server and passes 
message parameters through environment variables to a separate process. 
The process sends instructions back to the server through its standard 
output file descriptor. SIP CGI is almost identical to HTTP CGI and is 
particularly suitable for services that contain substantial web components. A 
CGI script can be written in Perl, Tcl, C, C++ or Java making it accessible to 
a large community of developers.  

5.6.3 SIP and Java 

Introduction 

The goal of this section is to identify the specifications to the Session 
Initiation Protocol (SIP) defined through the Java Community ProcessSM 
(JCPSM). This section inspects each Java SIP specification, describing their 
functionalities and the supported platforms. 

The Java language defines three platforms, namely Java 2 Platform, 
Standard Edition (J2SE™), Java 2 Platform, Enterprise Edition (J2EE™) and 
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Java 2 Platform, Micro Edition (J2ME™). Targeting the three Java platforms 
are four Java Specification Requests (JSRs) for SIP. These are: 

-JAIN™ SIP: JSR 32 defines the JAIN SIP specification. Sun Microsystems 
is the specification lead.  

-SIP Lite: JSR 125 defines the SIP Lite specification. Ubiquity is the 
specification lead. 

-SIP Servlet: JSR 116 defines the SIP Servlet specification. Dynamicsoft is 
the specification lead. 

-SIP for J2ME: JSR 180 defines the SIP for J2ME specification. Nokia 
Corporation is the specification lead. 
The substantial overlap in the experts and companies defining the SIP 

specifications through the JCP helps ensure consistent API specifications 
across the various expert groups. The collection of Java SIP specifications 
does not redefine or modify the SIP protocol. They simply define standardized 
API specifications specific to the Java environment, with the goal of 
simplified application development and application portability across 
different implementations of the SIP protocol. 

The Java SIP Specifications 

JAIN SIP 

The JAIN SIP specification was the first SIP specification standardized 
through the JCP. The JAIN SIP specification is a general purpose transaction 
based Java interface to the SIP protocol. It is rich both semantically and in 
definition to the SIP protocol. The motivation behind JAIN SIP is to develop a 
standard interface to the SIP protocol that can be used independently or by 
higher level programming entities and environments. JAIN SIP can be used 
in multiple ways: 
-As a specification for the J2SE platform that enables the development of 
stand alone user agent, proxy and registrar applications. 
-A base SIP implementation for an SIP Servlet container that enables the 
development of user agent, proxy and registrar applications in a Servlet-
based environment. 
-A base SIP implementation for an Enterprise JavaBeans™ (EJB™) container 
that enables the development of user agent, proxy or registrar applications in 
an EJB environment. 

JAIN SIP provides a standardized interface that can be used by 
communications developers as a minimum to support SIP in their 
applications. The JAIN SIP reference implementation provides a fully 
functional SIP implementation that can be used by developers to talk SIP 
from the Java environment. The target developer community for JAIN SIP is 
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developers that are familiar with the SIP protocol and require transactional 
control over the SIP implementation. 

SIP Lite 

The SIP Lite specification is an abstracted view of the SIP protocol that 
provides an SIP programming environment for developers who are not SIP 
literate. The API specification is primarily developed for the J2SE platform, 
however as the specification is quite small it can also be implemented on the 
J2ME platform. The motivation behind SIP Lite on the J2ME platform is to 
provide a rich object model that may be suitable for midsize devices with 
more processing power and memory than mobile handsets, i.e. PDAs and SIP 
phones. SIP Lite is most common as a J2SE platform based user agent or a 
programming interface to an SIP Phone. 

SIP Servlet 

The SIP Servlet API specification defines an environment for execution of 
network based SIP applications. It is implemented on application servers 
that support SIP and optionally also HTTP and the J2EE platform. It builds 
on the HTTP Servlet API specification and like HTTP Servlet defines both an 
API and a file format for application packaging. SIP Servlet supports baseline 
SIP as defined in RFC 3261 and also supports the following SIP extensions; 
the Event Notification framework (RFC 3265) and the Message method (RFC 
3428) for instant messaging.  

At the heart of SIP Servlet lies the ability of applications to perform SIP 
signaling, either as an endpoint (user agent) or as a proxy. The API 
specification aims to allow applications complete control over SIP signaling 
while at the same time hiding much of the non-essential complexity of SIP, 
which is not relevant to application developers. 

The main difference between a non-application server based SIP API 
specification and an application server based SIP API specification is that an 
application server itself creates and manages resources whereas the former 
generally speaking does not. SIP Servlet containers manage resources like 
listening points, threads, transactions and dialogs, session state, and 
application components. 

SIP for J2ME 

The SIP for J2ME API specification defines an SIP interface for small 
platforms and is still quite early in the definition process. SIP’s acceptance 
as the protocol of choice by the IP Multimedia Subsystem (IMS) architecture 
within the Third Generation Partnership Project (3GPP™), highlights the 
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value of mobile devices understanding and communicating SIP. The goal of 
the SIP for J2ME API specification is to address this need. 

Possible End to End architectures using the SIP APIs 

Network architectures are often unique unto themselves and network 
requirements often determine architecture choices. However it is foreseen 
that the Java SIP specifications will be used as follows in end-to-end network 
architectures: 
-SIP for J2ME will be implemented in mobile handsets. 
-SIP Lite will be implemented in midsize devices, i.e. PDAs, SIP phones, and 
desktops. 
-JAIN SIP will be implemented on desktops and in business tier enterprise 
application servers. It may also be the base SIP implementation for SIP 
Servlets. 
-SIP Servlet will be implemented in web tier enterprise application servers, 
bringing the benefit of converged SIP and HTTP applications. 
-SIP Servlet, JAIN SIP or JAIN SIP wrapped in a J2EE connector will co-exist 
in the core telecom network as the backbone for SIP network signaling and 
custom based SIP servers. 

 
Figure 5.4  IMS architecture and the applicability of the Java SIP specifications [35]. 

Figure 5.4 shows how existing Java specification interfaces to SIP map onto 
the IP Multimedia Subsystem (IMS) architecture as defined by 3GPP. 
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The Future of SIP and the Java platforms 

The SIP protocol was designed with Internet thinking, which compliments 
the enterprise thinking of many Java developers. This attribute should help 
lower the barrier of convergence between the telephony and Internet worlds. 
The communications industry is behind the success of both SIP and the 
Java platforms, highlighted by the numerous SIP specifications being 
standardized through the JCP. The acceptance of SIP as the universal 
signaling language for internet communications, coupled with the 
acceptance of the Java language as a preferred alternative to C or C++ as a 
development language for communication protocols demonstrates an 
inherent shift in thinking. The rapid growth of the Java language and the 
use of SIP for communications offer a great formula for communication 
network architectures. 

The Java language has a number of features that make it very 
attractive for the SIP protocol. The dynamic loading features make it easy to 
deploy and update applications at runtime; errors can be caught and 
handled gracefully; the built-in security framework allows containers to 
restrict applications in what actions they can perform. The Java platform 
also provides access to a large set of useful functionality, such as JDBC for 
database access, JNDI for directory lookups and JMF for handling streamed 
media. Furthermore, integration of the SIP protocol with the J2EE platform 
ensures SIP applications can plug into back-end infrastructure already in 
networks today. 

The Java SIP standards are also important for the success of the SIP 
protocol. Communications protocols traditionally are standardized in text 
document or unified modeling language (UML) format only. This leaves scope 
for interpretation when realizing an API specification for a specific 
programming environment, which has been the downfall of many good 
protocols in the past. The Java SIP standards unify the SIP communications 
development community and drives SIP into the enterprise domain by 
providing standardized API specifications to the SIP protocol specific to each 
Java platform. 

When the SIP protocol gains widespread adoption, a strong case will be 
presented to bundle SIP functionality into the J2SE platform. Acceptance of 
SIP in the J2SE platform may in turn lead to SIP being adopted by both the 
J2EE platform and the J2ME platform (similar to HTTP) in the future. It is 
expected in the coming years that the J2EE platform will experience the 
biggest growth of SIP enabled applications; however acceptance of SIP in the 
J2EE platform indirectly means success for SIP in the J2SE platform. The 
production of SIP applications on the J2ME platform may take a little longer 
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due to air interface bottlenecks and limited processing power on the mobile 
handset. 

5.7 SIP and T.38 Utilization for FoIP 

The best current practices for SIP T.38 fax and SIP fax pass-through 
sessions are documented in this IETF Internet-Draft: “SIP Support for Real-
time Fax: Call Flow Example And Best Current Practices” [36]. Here we 
provide a brief overview of this document. 

The Session Initiation Protocol (SIP) allows the establishment of real-
time Internet fax communications.  Real-time facsimile communications over 
IP may follow 2 modes of operation: T.38 fax relay as defined by the ITU-T 
T.38 recommendation or fax pass-through. 

This document clarifies the options available to Internet telephony 
gateway vendors to handle real-time fax calls using SIP.  While the primary 
focus is to address the more reliable real-time T.38 Group 3 fax mode, fax 
pass-through mode to enable fallback operations and super G3 fax 
communications using SIP are also briefly covered.  Examples of SIP call 
flows for real-time Internet fax gateways or SIP proxy redirect servers are 
given as well.  Elements in these call flows include SIP User Agents, SIP 
Proxy Servers, and Gateways to the PSTN (Public Switch Telephone 
Network).  

A session starts with audio capabilities, and, upon fax tone detection, 
T.38 fax capabilities are negotiated; upon successful negotiation, the session 
continues with fax capabilities and the media termination hosts exchange 
T.38 Internet fax packets.  The T.38 fax call scenarios include various 
aspects of the call sequence: the detection of fax transmission, the usage of 
the T.38 session description attributes, the optional fallback into fax pass-
through mode and the session termination. The fax pass-through call 
scenarios involve some specific SDP media attributes to enable proper fax 
transmission. Fax transmission can be detected by the receiving side, the 
emitting side or both. 

This document only covers the case when the fax transmission is 
detected by the receiving side (it is the most common practice and the other 
cases do not represent any particular challenges and are therefore left for 
future discussions). Call flow diagrams and message details are shown.  A 
list of IANA defined SDP attribute names for T.38 is summarized in Section 7 
of the document. 

For T.38, this document deals primarily with one transport protocol for 
the media: T.38 over UDP/UDPTL; T.38 fax packet transport over TCP using 
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SIP session establishment can easily be considered as well. These T.38 call 
flows were developed in the design of carrier-class SIP Telephony products 
supporting voice and real-time fax traffic. 

Some variants of these best current practices may apply depending on 
the nature or the configuration of Internet telephony gateways.  Two distinct 
cases are considered in this document: 

-The Internet telephony gateway only supports T.38 real-time fax 
communications.  In this case, the Internet fax gateway should initiate the 
SIP session with T.38 SDP capabilities (this is typically the case of Internet 
fax terminals, also called Internet-aware fax devices or the case of gateways 
statically configured to support T.38 fax calls only);  

-The Internet telephony gateway supports voice and real-time fax 
communications.  In this case, the Internet telephony gateway initiates the 
SIP session with audio capabilities, and, upon fax detection, the switchover 
to T.38 fax capabilities is triggered. The fax media connection may replace or 
be added to the audio connection depending on the target applications. 

For a detailed description of SDP attribute table for T.38 sessions, 
refer to IANA’s SDP parameters registration page. 

5.8 For Further Study 

For further information regarding the concepts discussed in this chapter 
please refer to following resources: 

5.8.1 SIP 

[14] 
[37] 
[10] 
[38] 
[39] 
[40] 
[41] 
[42] 
[43] 
[36] 

5.8.2 Call Flow Examples 

[14] PP: 153-185 
[44] 



 97
 
 

5.8.3 SDP 

[14] 
[45] 
[46] 

5.8.4 Programming SIP 

[35] 
[47] 
[48] 
[49] 
[50] 
[51] 

CGI 
[52] 
[47] 

JAIN™ SIP 
[53] 
[54] 

Relevant Links 
- The JAIN website: http://java.sun.com/products/jain  
- The Java Community Process website: http://jcp.org/  
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Chapter 6 
Simulator Implementation 
Details 
 
 
 
 
 

6.1 Introduction 

In this chapter, J-Sim, an open-source simulator, is introduced. This 
simulator is utilized throughout the implementation part of this thesis to 
explore the behavior of the developed protocol and components. Many details 
have been left out to simplify the introduction of the simulator. It should be 
mentioned that the simulator enjoys having a comprehensive and detailed 
documentation which has to be consulted for further delving into the details. 
All of the materials in this chapter, including the figures, have been taken 
from the simulator documentation and have been slightly modified and 
summarized. These materials, without further referencing, are therefore 
considered the intellectual property of the J-Sim developers team. In the 
next section, a brief introduction is given and the salient features of the 
simulator are discussed in the Section 3. A quick overview of the inner 
workings of the simulator and how one can develop new modules are given 
in Section 4. Simulation scenario creation, configuration and running are 
briefly introduced in the last section.  
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6.2 Introducing J-Sim 

J-Sim is a component-based, compositional simulation environment. It has 
been built upon the notion of the autonomous component programming 
model. Similar to COM/COM+, JavaBeans, or CORBA, the basic entity in    
J-Sim is component, but unlike the other component-based software 
packages/standards, components in J-Sim are autonomous and are 
realization of software ICs. 

The autonomous component architecture mimics the IC design 
architecture in the closest possible way. The behavior of J-Sim components 
are defined in terms of contracts (in much the same way IC chips are defined 
in the specification in the cookbook) and can be individually designed, 
implemented, tested, and incrementally deployed in a software system.  A 
system can be composed of individual components in much the same way a 
hardware module is composed of IC chips. Moreover, components can be 
plugged into a software system, even during execution. 

For the purpose of network modeling and simulation, it is defined, on 
top of the autonomous component architecture, a generalized packet 
switched network model.  The model defines the generic structure of a node 
(either an end host or a router) and the generic network components, both of 
which can then be used as base classes to implement protocols across 
various layers.  Although the model is derived by factoring out the common 
attributes of network entities in the current best-effort Internet, it is general 
enough to accommodate other network architectures, such as the IETF 
differentiated services architecture, the mobile wireless network architecture, 
and the WDM-based optical network architecture.  

J-Sim has been developed entirely in Java.  This, coupled with the 
autonomous component architecture, makes J-Sim a truly platform-neutral, 
extensible, and reusable environment.  J-Sim also provides a script interface 
to allow integration with different script languages such as Perl, Tcl, or 
Python. In the current release, J-Sim is fully integrated with a Java 
implementation of the Tcl interpreter (with the Tcl/Java extension), called 
Jacl. So, similar to ns-2, J-Sim is a dual-language simulation environment 
in which classes are written in Java (for ns-2, in C++) and glued together 
using Tcl/Java.  However, unlike ns-2, classes/methods/fields in Java need 
not be explicitly exported in order to be accessed in the Tcl 
environment.  Instead, all the public classes/methods/fields in Java can be 
accessed (naturally) in the Tcl environment. 
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6.3 J-Sim features 

6.3.1 Loosely coupled, autonomous component programming model 

The software architecture is component-based with clear, well-defined 
interfaces. Similar to JavaBeans, CORBA, and COM/DCOM, the basic entity 
in J-Sim is component, and an application is simply a composition of 
components. Ports are part of a component and are used by the component 
to communicate with other components. However, unlike the above 
component-based software packages/standards, the components defined in 
J-Sim are loosely coupled and autonomous.  By loosely coupled, it is meant 
that the behavior of a component is specified in terms of contracts. A 
contract is bound to a specific port or a group of ports, and defines the 
causality of data sent/received between the component that owns the port(s) 
and whichever components that are connected to the port(s).  In particular, 
it does not specify the components that participate in the 
communication.  Component binding is deferred until system integration 
time. By autonomous, it is referred to the capability of components to handle 
data in independent execution contexts.  When data arrives at a port of a 
component, the component processes the data immediately in an 
independent execution context.  The interference between different pieces of 
data handled by the same component at the same time is minimal.  

The ability to handle data in independent execution contexts, along 
with the fact that components are loosely coupled and only bound to one 
another at system integration time, is the key reason that a component can 
be reused in other software systems with the same contract context, in much 
the same fashion as IC chips are used in hardware design. 

6.3.2 Dynamic thread execution framework for real-time process-driven 
simulation 

In J-Sim, execution contexts are implemented by Java threads, with the 
thread scheduler in the Java Virtual Machine (JVM) scheduling thread 
execution.  The runtime contains three classes, WorkerThread, 
WorkerManager and WorkerPool: 

1. The WorkerThread wraps the Java Thread class up with the runtime, 
execution context information.   

2. The WorkerManager class implements the control mechanism that 
controls the number of WorkerThreads that can be simultaneously 
active. 
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3. The WorkerPool class creates new WorkerThreads, recycles 
WorkerThreads that finish processing data, and provides execution 
control (e.g., stopping or resuming execution of a thread) to the entire 
system.  

In J-Sim, the simulation engine extends the WorkerPool class and 
monitors the activities of all WorkerThreads.  It maintains a globally-
observed, virtual system time that is proportional to the real time (e.g. 1 
second in virtual time = 1000 seconds in real time).  When no WorkerThread 
is currently active, the simulation engine adjusts the virtual system time to 
the nearest future so that at least one WorkerThread may become active. 
With the above mechanism, a simulation runs in the same manner a real 
system does, in the sense that event executions are carried out in real time 
as opposed to at fixed time points in discrete event simulation.  The 
interactions and interferences among event executions, hence take place 
naturally as in real systems.  When no thread is currently active, the 
simulation engine performs a "fast-forward" operation in time to the nearest 
future at which at least one execution can be activated. This preserves the 
behavior of real systems and hence enhances the fidelity of the 
simulation.  The thread overhead incurred is mitigated by reusing threads.  

6.3.3 Implementation of a complete suite of Internet Integrated 
/Differentiated /Best Effort Services protocols 

For the purpose of network modeling and simulation: 

-An abstract network model is defined and implemented on top of the 
component-based architecture.  In particular, the generic structure of a 
node and several network components are defined. The centerpiece of 
the nodal structure is the core service layer that provides the 
fundamental core internetworking services (Figure 6.1). The core service 
layer is also decomposed into components and associated contracts are 
defined well. 

-Every component in the autonomous component architecture or in the 
abstract network model is implemented as a class, and classes are 
organized into layers. Figure 6.2 depicts the five-layer class organization 
in J-Sim. 

-An (almost) complete suite of Internet best effort, integrated services, 
and differentiated services protocols are implemented.  Table 6.1 lists 
the models/protocols currently supported in J-Sim.  
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Figure 6.1  The internal structure of a node. 

 
Figure 6.2  The class pyramid in J-Sim. 
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The implication of the implementation is three fold: 

1. With all the Internet protocol classes available, one can compose the 
protocol stack and conduct the simulation under different network 
scenarios in a plug-and-play fashion. 

2. With the abstract classes that capture the fundamental features of 
network entities and yet are flexible enough to accommodate new 
technology advances, one can extend J-Sim to a new network 
architecture, e.g., wireless LANs, optical networks with WDM technology, 
networks with satellite communication links, or ad hoc networks 
consisting primarily of mobile sensors. This is done by subclassing 
appropriate network modules and redefining their network attributes and 
methods that manipulate the attributes. For example, one needs only to 
modify the network interface card (NIC) component and the link 
component to incorporate the error characteristics and the mobility 

Table 6.1  Algorithms and protocols supported in J-Sim. 

Network 
Architecture    Application Socket 

Layer Transport Routing Traffic Model Tagger 
Marker 

Buffer 
Management

NI 
Scheduling 

Best Effect 
Services   FTP, FSP 

WWW BSD 4.3 

TCP-
Reno 
TCP-
Tahoe 
TCP-
Vegas 
TCP 
Sack 
UDP 

RIP (DV) 
OSPFv2 
Multicast shortest path tree
Multicast minimum load tree
Multicast Steiner tree 
DVMRP 
MOSPF 
CBT 

    Drop-Tail FIFO 

Differentiated 
Services             

Token Bucket 
TSW 
ETSW 

RED 
FRED 
SRED 
BRED 

FIFO 

Integrated 
Services       RSVP 

Unicast QoS routing 
QoS-enhanced OSPFv2 
QoS-enhanced CBT 

Periodic message (CBR)
Peak rate model 
Leaky bucket model 
Token bucket model 
IETF/Intserv Flowspec
(r,t)-smooth model 
(C,D)-smooth model 

    

RM 
EDF 
Stop-and-go
DCTS 
VirtualClock
LFVC 
SCFQ 
PGPS 
STFQ 
WF2Q 
Leave-in-
time 

 
FTP: file transfer protocol 

 
FSP: file service protocol 

BSD: Berkeley socket distribution TCP: transmission control protocol 
RIP: routing information protocol OSPF: open shortest path first 
DVMRP: distance vector multicast routing protocol         MOSPF: multicast extension to OSPF 
CBT: core based tree protocol FIFO: first in first out 
TSW: time sliding window ETSW: enhanced time sliding window 
RED: random early drop FRED: fair random early drop 
SRED: stable random early drop BRED: balanced random early drop 
RSVP: Resource reservation protocol CBR: constant bit rate 
RM: rate monotonic EDF: earliest deadline first 
DCTS: distance constrained task system LFVC: leap forward virtual clock 
SCFQ: self-clocked fair queueing PGPS: packet-by-packet generalized processing sharing
STFQ: start time fair queueing WF2Q: worst-case fair weighted fair queueing 
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characteristics in order to model wireless mobile networks.  Similarly, one 
can readily implement a new algorithm/protocol for experimentation and 
validation, simply by subclassing one or more appropriate protocol 
modules. 

3. By virtue of the component hierarchy (i.e., a component can be a 
composite component that contains child components), one can vary the 
level of details to which simulation is conducted. 

6.3.4 A dual-language environment that allows auto-configuration and 
online monitoring 

A dual-language environment is provided in which Java is used to create 
components and a script language is used as the glue or control language to 
integrate components at run time and to provide high-level, dynamic control. 
This facilitates fast configuration of customized simulation scenarios, and 
online monitoring and data collection. In the current release, J-Sim is fully 
integrated with a Java implementation of the Tcl interpreter (with the 
Tcl/Java API extension), called Jacl developed by Scriptics Corporation. This 
enables access to, and manipulation of, Java objects, such as creating an 
object from a Java class and invoking a method or accessing a field variable 
of a Java object, in the Tcl environment.  

In conjunction with the dual-language environment, information and 
event ports for data collection and debugging at the component level have 
been designed. One may connect an "instrument" component or script to the 
information port and the ports in the event group of a component of interest 
to configure/inspect the component at runtime.  This closely mimics the IC 
debugging and testing process. 

6.4 Working with J-Sim 

J-Sim is an application development environment based on the component-
based software architecture, Autonomous Component Architecture or ACA. 
This section serves these purposes: first, it gives an overview of the scripting 
language and the component-based architecture; then it outlines the 
Runtime Virtual System (RUV) and how to write components. 
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6.4.1 Scripting Using Tcl 

Scripting is commonly used in a large software environment for users to 
access and manipulate components at the desirable granularity. Scripting is 
an essential part of J-Sim and it is used to glue all the components and 
defines how the system operates. Tcl/Java, made available by third parties, 
is an extension to the core Tcl. It makes it possible to manipulate Java 
objects in the Tcl environment. The pure-Java implementation of Tcl 8.0 with 
Tcl/Java, called Jacl, is integrated in the toolkit. Tcl/Java defines a set of 
new Tcl commands for manipulating Java objects, such as creating an object 
from a Java class, invoking a method of a Java object, or accessing a field 
variable of a Java object.  A list of Tcl/Java commands can be found in the 
online manuals at the Tcl/Java website.  

6.4.2  ACA Overview - Component and Port 

The basic entity in the software architecture is a component. An application 
is envisioned as a composition of components. The notion of components is 
not new, and has been used in several commercial component-based 
software standards such as JavaBeans, CORBA and 
COM/DCOM/COM+.  Unlike JavaBeans, CORBA, and COM/DCOM, the 
components in J-Sim are loosely coupled, communicate with one another by 
wiring their ports together, and are bound to contracts. Contracts are bound 
at design time and components are bound at system integration time. One 
immediate advantage of this separation is that different components can be 
independently developed (on different platforms and/or different 
programming languages) and integrated later. 

 

Figure 6.3  The component-based architecture. 

Port: A component communicates with the rest of the world via its 
ports. A component may own more than one port. The programming 
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interface between a component and its port is well defined. Since a 
component only interfaces with its ports, one component can be developed 
without the existence of other components. Also, the actual communication 
mechanism a component uses to communicate with the rest of the world is 
completely hidden in ports.  

Contract: The behavior of a component is described by the port 
contract and the component contract. A port contract is bound to a specific 
port or a group of ports, defines the communication pattern between the 
component that owns the port(s), and the other components that are 
connected to the port(s). The component contract is the same as the 
traditional blackbox specification and characterizes the input/output 
relation of a component. A component is expected to work properly if all the 
adopted contracts are fulfilled.  

It should be clear now that when a user writes a component, they have 
to follow only the contracts adopted by the component, but do not need 
worry about the other components or the communication mechanism 
between them.  

A good analogy of the component-based architecture is the current IC 
architecture, where a hardware module (a software system) is assembled by 
connecting a set of IC chips (components) through their pins (ports). When 
the signals arrive at the pins of an IC chip, the chip performs certain tasks 
in compliance with the specification in the cookbook (contract), and may 
send signals at some other pins. A component can be reused in other 
software systems with the same contract context, in much the same fashion 
as IC chips are used in hardware design. Ports in a component can be 
organized into different groups. A port group is uniquely identified within a 
component by its group ID. A port is uniquely identified within a port group 
by its assigned port ID. Therefore, a port is uniquely identified within a 
component by its port group and port IDs. A component has a default port 
group with empty ID ("").  

The ultimate goal of the component architecture is to mimic the 
current hardware manufacturing architecture. By selecting and connecting 
an appropriate set of chips, one can readily compose a hardware component 
with desirable functions. An important step towards the goal is to build a set 
of components that can be re-used in applications of similar nature. 
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6.4.3 More on Components - Component Hierarchy 

In J-Sim, a (parent) component may include several sub-components (called 
child components). Figure 6.4 illustrates the concept. A component is 
uniquely identified within its parent component by its ID. 

 
Figure 6.4  The component hierarchy. 

Ports of a child component or the child component itself may be exposed to 
the outside world of its parent.  Port exposure is realized by creating a port 
for the parent and then connecting it to the port of the child. The port of the 
parent component acts as a shadow port of that of the child component.  The 
real communication occurs between the outside world and the child 
component's port.  

6.4.4 The Runtime Virtual (RUV) System 

In the course of developing a large software project, it may become 
cumbersome to use many of the Tcl/Java commands because one has to 
store the references of the Java objects in Tcl variables in order to access 
them. Naming of these Tcl variables is not at all trivial. For example, in the 
component hierarchy, a Tcl variable can only be used to access one 
component in the hierarchy and the other components/ports have to be 
accessed by using methods like  getParent(), getComponent() and getPort().  

To mitigate the referencing problem, a referencing system is 
constructed, called RUntime Virtual system or RUV in short, on top of 
Tcl/Java. Because the component hierarchy resembles in essence the UNIX 
file system hierarchy, the same notation is employed and a component or a 
port is represented as a path, in the same manner a file is represented in a 
file system. For example, /component1/child2 represents the component with 
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ID child2 within the component represented by /component1; 
/component3/port3@group4 represents the port with ID port3 in the port group of 
ID group4 within the component represented by /component3. Note that a "@" is 
used in a port path to separate the port ID and the port group of the port.  

Moreover, several UNIX-file-system-like commands have been 
provided, such as ls, cd, pwd, mkdir, cp, mv, rm and cat in the context of the 
component hierarchy to navigate a component system and manipulate 
components and ports in the system. The commands are summarized in 
Table 6.2 (Detailed syntax of each command can be found in the provided 
documentation and hence is omitted here due their large size). 

Table 6.2 RUV commands. 

Command  Description  
! <path> ?<method> ?<arg> Convert the path to the reference to the Java 

object and then invoke the method specified in 
the argument list.  

cat ?<path>? Print the internal state (invoking 
Component.info(), Port.info()), and/or the 
connections, of a component /port. 

cat <obj_ref> Print the values of a Java object; especially 
handy when the object is a Java array. 

cd <path> Change the current working directory to path. 

connect <path>... -to|-and 
<path>... 

Connect components/ports.  
Options 
-and   Set up a bidirectional connection. 
-to    Set up a unidirectional connection. 

cp <source path>... <dest 
path> 
cp <source path>... -d <dest 
path>... 

Copy the components/ports.  
 

disconnect <path>...  Disconnect components/ports. 

exit Close the current terminal. If the current 
terminal is the last terminal, executing this 
command also exits J-Sim. 

inject <data> <port_path>... Inject the specified data to the port(s).  

ls ?<path>...? List the child components (and ports).  

mkdir <className> <path>... 
mkdir <obj_ref> <path>... 
mkdir <port_path> 
?<port_path>...? 
mkdir <component_path> 

Create components/ports. If the class name or 
the Java object is not a component/port, a 
wrapper  
component (drcl.comp.WrapperComponent) is 
created to encapsulate the object.  

The fourth form uses the default class to 
create component(s) at the specified path. It 
is equivalent to   
"mkdir <default_class> <component_path>".  

mv <source path>... <dest 
path> 

Move (rename) components/ports.  
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pwd Print the current working path. 

rm <path>... Remove components/ports. 

set_default_class 
?<class_name>? Set the default class for 'mkdir'.  

term <title> ?-t 
<terminal_class>? 
 ?-s 
<shell_class>|<shell_object>? 
 ?<init_script>? 

Create a terminal. One may specify the terminal 
class (e.g., Tcl/Java, Perl, Python), the shell 
class or object to be associated with the 
terminal, and/or the initial script to execute. 

whats_default_class Print the name of the default class for 
'mkdir'.   

RUV has powerful path expressions. In addition to the wildcard 
expressions using "*" and "?", one may use the range expression "<ID>-<ID>" 
that specifies a range of components. 

6.4.5 A Template to Start Writing a Component With 

The following example is provided which may serve as a template for writing 
a complete and correct component. Essentially one must override one 
method, process(), and may override six other methods, reset(), duplicate(), info() 
and _start()/_stop()/_resume() in a component. 

Component Template: 

  1 import drcl.comp.*; 
  2 import drcl.comp.Port; 
  3  
  4 /** 
  5  * Template for writing a component. 
  6  */ 
  7 public class ComponentTemplate extends drcl.comp.Component 
  8                                   implements drcl.comp.ActiveComponent 
  9 { 
 10     // The fields here are simply defined to demonstrate how 
 11     // methods in this template are used. 
 12     int x; 
13 Port outPort; 
 14 
 15     /** 
 16      * Constructor. 
 17      */ 
 18     public ComponentTemplate() 
 19     { 
 20         super(); 
 21     } 
 22 
 23     /** 
 24      * Constructor. 
 25      */ 
 26     public ComponentTemplate(String id_) 
 27     { 
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 28         super(id_); 
 29     } 
 30 
 31     /** 
32 * Invoked when data_ arrives at this component at the inPort_ 
33 * port. */ 
 34     protected void process(Object data_, Port inPort_) 
 35     { 
 36         // Put codes here for handling the incoming data. 
 37             outPort_.doSending(data_); 
 38        } 
 39    } 
 40     /** 
 41      * Resets this component to the initial state to use anew. 
 42      * Must call super.reset() in the beginning. 
 43      */ 
 44     public void reset() 
 45     { 
 46         super.reset(); // Let super class reset its fields. 
 47         x = 0;         // Reset the fields defined in this class. 
 48     } 
 49     /** 
 50      * Copies the content from the source_ to this component. 
 51      * Must call super.duplicate() in the beginning. 
 52      */ 
 53     public void duplicate(Object source_) 
 54     { 
 55         super.duplicate(source_); // Let super class copy its fields. 
 56         ComponentTemplate that_ = (ComponentTemplate)source_; 
 57         x = that_.x;              // Duplicate the fields defined in 
 58          // this class. 
 59     } 
 60     /** 
 61      * Invoked when the component is run()ed. 
 62      */ 
 63     protected void _start() 
 64     { 
 65         debug(this + " is starting!"); 
 66     } 
 67     /** 
68      * Script interface which reveals the internal states of the 
69      * component. It is for debugging and demonstration purposes. */ 
 70     public String info() 
 71     { 
 72         return "Current count = " + x + "\n"; 
 73     } 
 74     /** 
 75      * Script interface which increments the counter by +1.  
 76      */ 
 77     public void increment() 
 78     { 
 79         x++; 
 80     } 
 81 } 

Method Overrides  

1. A component is triggered by data (process(), line 34). The process() 
method is the heart of the component and implements the behavior of 
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the component. Specifically, the method is invoked by the system 
whenever some data arrives at one of the component's ports. As 
mentioned earlier, the method is executed in a new thread context. It 
is possible for a component to handle multiple data simultaneously in 
multiple threads. It is component writer's responsibility to ensure data 
integrity and synchronization among multiple threads.  

2. A component can be reset (reset(), line 44). The reset() method sets 
the component to its initial state. It allows the component to be started 
anew after being executed for some time. To correctly override the 
method, the subclass must call super.reset(). When recursive calling 
of the super.reset() method  reaches drcl.comp.Component, the method 
resets the ports and  the child components in a recursive manner.  

3. A component can be duplicated (duplicate(), line 53) The duplicate() 
method allows the component to be cloned: clone(). A subclass should 
override this method to copy the fields defined in the subclass. When 
overriding the method, the subclass must call super.duplicate() so 
that the super class can copy the fields defined in it. When recursive 
calling of the super.duplicate() method reaches drcl.comp.Component, 
the method duplicates the ports and the child components in a 
recursive manner, and then connects the child component in the same 
manner as in the source component. The method originates from the 
drcl.ObjectDuplicable interface. It complements the clone mechanism 
that exists in the java.lang.Object. The RUV system command cp uses 
this method to do the tricks.  

4. A component may be started as a data source (_start() line 63) In 
addition to being triggered by data that arrive at ports, a component 
can be started by the run() method. The run() method creates a new 
thread and then the thread calls the _start() method of the component. 
The run() method also calls the run() method of the child components, 
until all the components in the hierarchy are started: _start().  As not 
all the components in the hierarchy need to be started: _start(), the 
drcl.comp.ActiveComponent interface is provided. In the run() process 
mentioned above, only when a component implements the interface, a 
new thread is created which in turn calls the _start() method of the 
component.  

5. One can get state information of a component during runtime (info() 

line 70). For the purpose of online debugging and monitoring, a 
component should override the info() method to provide useful 
information such as the internal states of the component. 
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Rules of Component Writing 

1. Script interface: In addition to the methods discussed above, a 
component may provide several script interfaces to manipulate the 
component from the scripting environment (e.g. in a Tcl terminal). 
However, as viewed from a component, the script interfaces of the 
other components can not be accessed because by virtue of the loosely 
coupled component architecture, these interfaces are blocked by 
ports.  As a component is interfaced with ports, it does not know to 
which components it is connected and cannot readily access the 
interfaces in other components.  

2. Data sent is out of sender's control: When a component sends a piece 
of data, it does not own the data anymore. This rule is not enforced by 
the programming language. Programmers must make sure that the 
component does not operate on data that is already sent. No 
assumption can be made on the data (e.g. modified or recycled by the 
receiving component) unless it is clearly stated in the contract.  

3. Using wrapped APIs to do thread synchronization: In order to gain 
better control on threads which process data on a component, 
wrapped thread synchronization APIs are provided, namely 
wait(Object)/notify(Object)/notifyAll() in drcl.comp.Component in 
replace of wait()/notify()/notifyAll() in java.lang.Object.  The 
semantics of thread synchronization are still the same as in Java. 

Using the SUDPApplication Class 

To facilitate programming, several template classes have been provided in   
J-Sim. To implement an application layer protocol, one can extend an 
application layer class SUDPApplication that has been designed to take care of 
many low-level details. In particular, this class provides a set of methods to 
send/receive a datagram. Below is a template application layer protocol 
which extends SUDPApplication. 

 import drcl.comp.Port; 
 import drcl.comp.Contract; 
   
 /** 
  * Example application class. 
  */ 
  public class Application extends drcl.inet.application.SUDPApplication 
  { 
        aPacketType packet;  
        // A packet construction mechanism should be provided 
 
  public Application ()  
  { 
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   super(); 
  } 
      // This method is used to send packets(Any kind of object) to the 
      // mentioned node. 
 sendmsg(packet, 10/*size*/, destinationAddress, destinationPort); 
  
  protected void dataArriveAtDownPort(Object data, Port downPort) 
  { 
   long peerAddress = getPeerAddress(data); 
   int peerPort = getPeerPort(data); 
   aPacketType packet = (aPacketType)getContent(data); 
          // processing methods should be located here or called from here
  } 
  } 

6.5 Network Simulation Framework and Simulation Scenario 
Creation 

INET is a network simulation framework built upon the autonomous 
component architecture and specific to network simulation. Essentially 
features common to each network component (such as an IP layer, a network 
interface card, a link, etc.) have been factored out and all the network 
components (and their contracts) are defined and implemented in INET. 
Internal structure of a node (either an end host or a router) is also defined. 
Users may then compose a network scenario in a plug-and-play fashion, by 
connecting components in their desired manner.  Users may also subclass 
an appropriate component and redefine new attributes and methods to 
incorporate their own protocols/algorithms. To create a network simulation 
scenario, following items should be taken into consideration: 

-Topology creation 
-Building the internal structure of nodes  
-Configuring the network scenario and miscellaneous issues  

Figure 6.5 gives an example network and the internal structure of its nodes. 
As the example shows, a network is a composite component which consists 
of nodes, links and smaller networks. A node is also a composite component 
which consists of applications, protocol modules, and a core service layer 
(CSL). 

The core service layer is an abstract component which encapsulates 
the functions of the network layer and the layers beneath the network layer. 
It provides network services and events to protocols, in the form of         
inter-component contracts. 

With all the components available in INET, one may readily compose a 
network scenario of their like. Moreover, several utility classes have been  
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Figure 6.5  An example network scenario that can be simulated. 

provided to help with scenario construction. In particular, since configuring 
the internal structure of nodes usually follows similar patterns 
and repetitively cycles through several tedious steps, some utility classes 
have been provided to automate the process. The basic way to compose a 
scenario is to build it "by hand". That is, every necessary component, from 
networks, nodes, links to protocols and modules inside a node is created and 
they are connected together afterwards. The idea is very simple but the tasks 
are repetitive and can get a bit tedious even for a small-sized network. 
Fortunately, both tasks of creating a network topology and building network 
nodes can be made follow certain patterns and then automate the processes. 
The utility class drcl.inet.InetUtil and the builder classes 
drcl.inet.NodeBuilder and drcl.inet.CSLBuilder are developed for this 
purpose. Building a network simulation scenario in J-Sim is outlined in the 
following TCL script: 
# Create a container to hold the scenario 
cd [mkdir drcl.comp.Component scene] 
# Step 1: Create topology 
... 
# Step 2: Build nodes 
... 
# Step 3: Configure nodes 
... 



 115
 
 

# Attach simulator runtime to "scene" 
attach_simulator . 
# Start all "active" components under "scene" if there is any 
run . 

In what follows, the process of creating a scenario with the utility 
functions in drcl.inet.InetUtil are introduced. Followed by that, builder 
classes and their usages are introduced. Finally, few other utility functions 
in drcl.inet.InetUtil are introduced (The process of building/configuring 
scenario by hand is not discussed here). 

6.5.1 Create Topologies 

There is a set of createTopology(...) methods in the drcl.inet.InetUtil class for 
automating the process of creating a topology . The simplest form of all is as 
follows: 

public static void createTopology(Component network_, 
                                  int[][] adjMatrix_, Link link_); 

The network_ argument is where the nodes are to be created in. The 
most important argument in all the createTopology() methods is the 
adjacency matrix, adjMatrix_. It is a two-dimensional array. The length of the 
first dimension, i.e., adjMatrix_.length, is the number of nodes. Each element 
in the first dimension is a one-dimensional array, which represents the 
neighbors of the node. The position of a neighbor in this one-dimensional 
array is the ID of the port that the node uses to connect to the neighbor. 
Nodes are indexed as 0, 1,... (adjMatrix_.length-1). The neighbors are 
represented by their indices. Each node may have a different number of 
neighbors. link_ is the physical link component used to connect two nodes. 
The most complete form of all the createTopolgy() methods is the following: 

public static void createTopology(Component network_, 

                                  String routerIDPrefix_, 

                                  String hostIDPrefix_, 

                                  Object[] existing_, 

                                  int[][] adjMatrix_, 

                                  long[] ids_, 

                                  Link link_, 

                                  boolean assignAddress_); 
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6.5.2 Builders 

After a network topology is created, the next task is to build the nodes. Note 
that the nodes created during the process of creating a network topology are 
just empty composite components. Appropriate protocols and modules need 
to be put in to make them functional. One way to do this, is of course 
building them by hand. In this section, using builder classes to automate the 
process is explained. The rationale behind this is very simple. Instead of 
building network nodes one by one by hand, nodes are first categorized. 
Supposedly there should be far less types of nodes in the network than the 
number of nodes themselves. Then a node template for each type of node is 
built by hand, and then the nodes of the same type are built by duplicating 
the structure of the template node. 

Node Builder 

The node builder class drcl.inet.NodeBuilder has a set of build(...) methods 
to build the internal structure of nodes. But before the other nodes can be 
built, the NodeBuilder itself needs to be built. Building a NodeBuilder is no 
different from building a real node (i.e., adding components and connecting 
them). But since the relation between the modules in the upper protocol 
layer (UPL) and the core service layer (CSL) is defined, the process can be 
further automated by having a set of port naming rules for a protocol. If a 
protocol follows the rules, it can be added to the NodeBuilder and the 
NodeBuilder will take care of the connections between the protocol and CSL. 
Some of build(...) methods of NodeBuilder are listed below: 

public void build(Object c_); 

public void build(Object c_, CSLBuilder cb_); 

The second build(...) method, NodeBuilder uses CSL builder to build 
the internal structure of CSL. In the first form of the build(...) method, the 
default CSL builder is used. To use a different CSL implementation, one may 
supply the corresponding CSL builder to NodeBuilder. The CSL builder 
introduction is not provided here and information about it can be found in 
the simulator documentation. 

6.5.3 Configuring the Network Scenario and Miscellaneous Issues 

Static Routes Setup 

Instead of using the node properties to manually set up static route entries 
along a path, drcl.inet.InetUtil includes a set of setupRoutes(...) methods 
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to automate the task. Given source and destination nodes, the methods 
compute the unicast or multicast routes with minimum hop count, and then 
install appropriate route entries in the nodes along the routes. The following 
is one of the forms of the method: 

public static void setupRoutes(Node src_, Node dest_, String bidirect_); 

Online Interactions 

In addition to creating scenarios, running simulations often involve a lot of 
online activities such as debugging, tuning parameters and collecting 
results. A set of RUV system commands and utility components are 
developed to facilitate these tasks: 

script 

The script command schedules a script to be executed by the specified 
runtime at a specified future time instance.  It is useful in constructing a 
complex simulation scenario by scripting.  The basic form of the command is 
as follows: 

script <script> -at <time> ?later? -on <simulation_runtime> 

 ?-period <period>? 

If "later" is present, then the script is executed at a relative future 
time instance. If the period option is present, the script schedules itself 
recursively in the specified period after being executed the first time at the 
specified time instance. 

Save Results Directly to a File - drcl.comp.io.FileComponent 

The drcl.comp.io.FileComponent component saves incoming data to a file.  To 
use it, connect a FileComponent to the port at which the target component 
originates interested results. 

xy Plot - drcl.comp.tool.Plotter 

The drcl.comp.tool.Plotter component displays incoming data on an xy 
plot.  The Plotter component is able to display multiple datasets on a plot as 
well as display multiple plots at the same time.  Multiple plots are ordered by 
IDs starting from 0, so the datasets on a plot. The port ID and the port group 
ID of the port at which data arrives are used as the dataset ID and the plot 
ID respectively to draw the data on its corresponding plot.  In addition to be 
integrated as part of the component system, Plotter can be used as a 
standalone Java Program with the following usage: 
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    java drcl.comp.tool.Plotter ?-1? <file1> ?<file2>...? 

NAM Trace - drcl.inet.tool.NamTrace 

The NamTrace component is an instrument class that probes appropriate 
components to collect interested events and produce trace outputs in the 
NAM (VINT/UCB Network Animator) trace format. Currently, NamTrace 
supports the following NAM events/configurations: node, link, queue, color 
and packet. The first four events are usually used in the initial/configuration 
part of a trace that defines the network topology and the color index. Packet 
events are collected from probing appropriate components in the system. In 
all cases, the traces are produced at the output port of the NamTrace 
component.  To save the output in a file, one must connect a file component, 
drcl.comp.io.FileComponent, to the output port of the NamTrace component. 

With the following utility method, all the necessary configurations can 
be done in one line no matter how many nodes and links exist:  

set nam [java::call drcl.inet.InetUtil setNamTraceOn [! .] \ 

"SimNAMTrace.nam" [_to_string_array "red blue yellow green black orange"]] 

Here we wrap up the introduction of the relevant simulator capabilities 
and move on to study the developed modules and the simulation scenario in 
the next chapter. 

 

 

Relevant links: 
J-Sim Homepage: http://www.j-sim.org 

Java: http://java.sun.com/ 

COM/COM+: http://www.microsoft.com/com/ 

JavaBeans: http://java.sun.com/products/javabeans/ 

CORBA: http://www.corba.org/ 

Jacl: http://tcljava.sourceforge.net/docs/website/ 

Perl: http://www.perl.com/ 

TCL: http://dev.scriptics.com/ 

Python: http://www.python.org/ 

Scriptics Corporation: http://www.scriptics.com/ 

TCL/Java commands: http://tcljava.sourceforge.net/docs/website/manual.html 
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Chapter 7 
Developed Modules, Simulation 
Scenario & Corresponding 
Results 
 
 
 

7.1 Introduction 

In this chapter, as the title of the chapter suggests, we wrap up the thesis 
with presenting the final elements, i.e. presenting the developed modules, 
studying the simulation scenario and presenting the accomplished results. 
In Section 3, the developed SIP protocol and components are presented. 
Specifically, some extracts of the outputs of the Javadoc software produced 
from sifting through the source codes are presented. These APIs can 
visualize the outline of how modules really operate. In Section 4, a typical 
simulation scenario is analyzed and different stages of scenario construction 
and running are explained. In the last section, results of the aforementioned 
scenario are presented and discussed. 

7.2 Things That Are Implemented 

First, we review what is supposed to come out of this simulation and then 
move on to the modules details in the next section. We intend to explore 
whether fax parameters details can be negotiated using SIP/SDP. Specific 
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SDP attributes and the interaction of SIP and T.38 protocols are not of high 
importance in this thesis. The implemented parts are the session 
establishment, starting a typical file transfer, which can serve as a 
demonstration of T.38 fax transfer, and the subsequent session tear-down 
after file transfer is complete. Due to the fact that specific T.38 protocol SDP 
headers are not studied in this thesis, in the message content prints in the 
simulation results section, only few constant symbolic SDP header fields are 
present. As pointed out in the next chapter, studying of these fields is 
considered as possible future work. One other important analysis carried out 
in this simulation, is the utilization of SIP contact header for reducing the 
load on proxy servers which is a highly desirable feature. 

7.3 Developed Modules 

In total, six modules have been developed and they are: SDPMessage which is a 
class implementing SDP headers; SIPMessage which is a class implementing 
SIP headers and also embeds an instance of SDPMessage in itself if the body 
type indicates so; SipPS which is a class implementing an SIP proxy server; 
SipUA which is a class implementing an SIP user agent and finally 
T38Receiver and T38Sender which subclass ftpd and ftp respectively and act 
on behalf of real T.38 modules. 

  The classes implementing SDP headers and T.38 receiver and sender 
are some simple classes, source codes of which are provided in the appendix. 
Some extracts of the APIs of classes implementing SIP message, user agent 
and proxy server are provided here and briefly explained. The full source 
codes of these modules can be found in the appendix as well. 

7.3.1 SIP Message Class 

This class provides a mechanism for storing the SIP headers. It utilizes the 
java.util.Properties class of Java for easily setting and retrieving the SIP 
headers and their corresponding values. It also embeds an instance of 
SDPMessage in itself if in its constructor the type of content is set to 
“application/sdp”. It also provides methods for retrieving both SIP and SDP 
headers as Properties objects to further manipulate them. Part of its API 
appears in Table 7.1.   

Table 7.1  SIP Message Class API. 

Field Summary 
 java.util.Properties headers  
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          SIP headers are held in this Properties object. 
 SDPMessage sdpMessage  

          An SDP message which is in the SIP message. 
 java.lang.String SIPContentType  

          If set to "application/sdp", an SDP message is created as an 
embedded object. 

 

Constructor Summary 
SIPMessage(java.lang.String contentType)  
          Constructor.  

 

Method Summary 
 java.util.Properties returnSDPHeaders()  

          This is for someone who wants to set other SDP headers as 
well. 

 java.util.Properties returnSIPHeaders()  
          This is for someone who wants to set other SIP headers as 
well. 

7.3.2 SIP Proxy Server 

This class implements the SIP proxy server. It provides some initializing 
methods such as: setAddress(), setNodeViaField(), setRegisteredNode() and 
setOtherNetworkProxyServerAddress(). These method are called with 
appropriate arguments during the scenario building in the TCL script. It also 
defines methods for sending and processing these SIP requests: ACK, INVITE 
and BYE. It defines a response processor which prints informational 
messages based on the response class and it especially handles the OK 
response. The method dataArriveAtDownPort() handles the incoming data and 
directs it to the appropriate processor. Two utility methods, 
constructMessage() and printMessageContent(), are also provided and they 
carry out tasks described by their names. User agent registers itself with the 
proxy server during the initialization process through the TCL script. The 
transaction ID of the first received SIP message, its Call-ID header, is stored 
in the proxy server so the server can discard messages not belonging to this 
transaction. The rest of the details about the proxy server can be found in 
the following API or its full source code in the appendix. 
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Table 7.2  SIP Proxy Server API. 

Field Summary 
 java.lang.String contentType  

          A variable used for setting the content type of the SIP message, 
typically set to "application/sdp". 

 java.lang.String messageType  
          An intermediate variable which is used for checking whether a 
message is a request or it is a response and directing it to the related 
processor. 

 int nodeAddress  
          Node address is set during initialization through the TCL 
interface. 

 java.lang.String nodeViaField  
          It is set during initialization through the TCL interface. 

 int otherNetworkProxyServerAddress  
          It is set during initialization through the TCL interface. 

 SIPMessage receivedMessage  
          An intermediate variable which is used for processing. 

 int registeredNode  
          All requests of the set node first goes to this proxy server and it is 
set during initialization through the TCL interface. 

 int responseMessageClass  
          A vaiable to store the response class from one of six possible 
classes. 

 SIPMessage toBeSentMessage  
          This is a message which is created by different methods of the 
class. 

 java.lang.String transactionID  
          Used for storing the transaction ID so that junk messages can be 
discarded. 

 

Constructor Summary 
SipPS()  
          Constructor.  

 

Method Summary 
 SIPMessage constructMessage(java.lang.String startLine, 

java.lang.String via, java.lang.String to, 
java.lang.String from, java.lang.String callID, 
java.lang.String contentType)  
            

protected  void dataArriveAtDownPort(java.lang.Object data, 
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drcl.comp.Port downPort)  
          Arrived data first gets processed by this method. 

 void duplicate(java.lang.Object source)  
            

 java.lang.String info()  
            

 void printMessageContent(SIPMessage message)  
            

 void processACK(SIPMessage receivedMessage)  
            

 void processBYE(SIPMessage receivedMessage)  
            

 void processINVITE(SIPMessage receivedMessage)  
            

 void processResponse(SIPMessage receivedMessage)  
          This method first checks to see whether the message is a valid 
one then checks to see if it's a response or an unsupported request, after 
that if the message is a response it goes on to handle each type of 
response classes. 

 void reset()  
            

 void sendACK(SIPMessage receivedMessage, int nextHop)  
            

 void sendBYE(SIPMessage toBeSentMessage, int nextHop)  
            

 void sendINVITE(SIPMessage toBeSentMessage, int nextHop)  
            

 void sendOK(SIPMessage receivedMessage, int address)  
            

 void setAddress(int address)  
            

 void setNodeViaField(java.lang.String s)  
            

 void setOtherNetworkProxyServerAddress(int address)  
            

 void setRegisteredNode(int address)  
            

7.3.3 SIP User Agent 

This class implements the SIP user agent. Like proxy server, it provides some 
initializing methods: setAddress(), setConfiguredProxyServerAddress(), 

setNodeViaField() and setAlwaysUseProxyServer(). The last method sets the 
user agents to always use the proxy servers and never bypass them and 
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contact each other directly. The default is false which means user agents, 
whenever they can, contact each other directly using the address found in 
the received SIP message Contact header. The same set of sending and 
processing requests and responses methods, found in proxy servers, are 
present here as well with some modifications. Some other methods which 
were in the proxy server class, as can be seen in the API, are also present 
here. There is also a field call faxPort which is used to alert the T.38 module 
to start sending the fax after the session establishment is complete. Again, 
the rest of the details about the user agent can be found in the following API 
or its full source code in the appendix. 

Table 7.3  SIP User Agent API. 

Field Summary 
 boolean alwaysUseProxyServer  

          It is set during initialization through the TCL interface. 
 int configuredProxyServerAddress  

          All requests of the node first goes to this address which is set 
during initialization through the TCL interface. 

 java.lang.String contentType  
          A variable used for setting the content type of the SIP message, 
typically set to "application/sdp". 

 int destination  
          Used for storing the other party's address. 

 drcl.comp.Port faxPort  
          Used for alerting the T.38 fax module to start sending the fax. 

 java.lang.String messageType  
          An intermediate variable which is used for checking whether a 
message is a request or it is a response and directing it to the related 
processor. 

 int nodeAddress  
          Node address is set during initialization through the TCL 
interface. 

 java.lang.String nodeViaField  
          It is set during initialization through the TCL interface. 

 SIPMessage receivedMessage  
          An intermediate variable which is used for processing. 

 int responseMessageClass  
          A vaiable to store the response class from one of six possible 
classes. 

 SIPMessage toBeSentMessage  
          This is a message which is created by different methods of the 
class. 

 java.lang.String transactionID  
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          Used for storing the transaction ID so that junk messages can be 
discarded. 

 boolean transactionInitiator  
          Used for determining if the node should respond like 
acknowledging an OK with ACK only if the node is indeed the initiator 
of the request-response. 

 

Constructor Summary 
SipUA()  
          Constructor.  

 

Method Summary 
 SIPMessage constructMessage(java.lang.String startLine, 

java.lang.String via, java.lang.String to, 
java.lang.String from, java.lang.String callID, 
java.lang.String contentType)  
            

protected  void dataArriveAtDownPort(java.lang.Object data, 
drcl.comp.Port downPort)  
          Arrived data first gets processed by this method. 

 void duplicate(java.lang.Object source)  
            

 java.lang.String info()  
            

 void printMessageContent(SIPMessage message)  
            

 void processACK(SIPMessage receivedMessage)  
            

 void processBYE(SIPMessage receivedMessage)  
            

 void processINVITE(SIPMessage receivedMessage)  
            

 void processResponse(SIPMessage receivedMessage)  
          This method first checks to see whether the message is a valid 
one then checks to see if it's a response or an unsupported request, after 
that if the message is a response it goes on to handle each type of 
response classes. 

 void reset()  
            

 void sendACK(SIPMessage receivedMessage)  
            

 void sendBYE()  
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 void sendINVITE(SIPMessage toBeSentMessage)  
            

 void sendOK(SIPMessage receivedMessage)  
            

 void setAddress(int address)  
            

 void setAlwaysUseProxyServer(boolean x)  
            

 void setConfiguredProxyServerAddress(int address)  
            

 void setNodeViaField(java.lang.String s)  
            

7.4 Simulation Scenario 

As pointed out in the previous chapter, J-Sim simulator uses TCL scripts to 
carry out scenario building and configuration. In this section the TCL scripts 
used to do such tasks are analyzed line by line. In the first part, we analyze 
the script used for building the simulation scenario and in the next part, the 
script used for running the simulation is presented. 

 
Figure 7.1  The Simulation Scenario. 
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7.4.1 The Network Topology 

The simulated network scenario is depicted in Figure 7.1. 

7.4.2 Scenario Building 

1 ###################################################### 
2 # Topology: 
3 # 
4 #            ------------------------- 
5 #           /                         \  
6 # h0-------n1-------n4-------n5-------n2-------h3 
7 # 
8 ###################################################### 
9 cd [mkdir drcl.comp.Component /SimScenario] 
10 
11 puts "Creating topology..." 
12 set link [java::new drcl.inet.Link] 
13 $link setPropDelay 0.3; # 300ms 
14 set adjMatrix [java::new {int[][]} 6 {{1} {0 2 4} {5 1 3} {2} {1 5} 
{4 2}}] 
15 java::call drcl.inet.InetUtil createTopology [! .] $adjMatrix $link 
16 
17 puts "Creating builders..." 
18 # router builder: 
19 set rb [mkdir drcl.inet.NodeBuilder .routerBuilder] 
20 $rb setBandwidth 1.0e6; #1Mbps 
21 # Host builder: 
22 set hb [cp $rb .hostBuilder] 
23 #Setting up transport protocols  
24 set TCPModule [mkdir drcl.inet.transport.TCPb $hb/tcp] 
25 set UDPModule [mkdir drcl.inet.transport.UDP $hb/udp] 
26 
27 # Adding a Data Counter to each host: 
28 mkdir drcl.comp.tool.DataCounter $hb/counter 
29 
30 #Setting up T.38 Fax Senders/Receivers:    
31 
32 $TCPModule addPort "up" "t38fax" 
33 set T38FaxReceiver [mkdir mkh.sip.T38Receiver $hb/t38FaxReceiver] 
34 connect -c $hb/t38FaxReceiver/down@ -and $hb/tcp/up@ 
35 
36 set T38FaxSender [mkdir mkh.sip.T38Sender $hb/t38FaxSender] 
37 connect -c $hb/t38FaxSender/down@ -and $hb/tcp/t38fax@up 
38 
39 puts "Building Nodes ..." 
40 $rb build [! n?] 
41 $hb build [! h?] 
42 
43 #Setting up UAs:   
44 set SipUA1 [mkdir mkh.sip.SipUA h0/ua] 
45 set SipUA2 [mkdir mkh.sip.SipUA h3/ua] 
46 $SipUA1 setName "SIP User Agent 1" 
47 $SipUA2 setName "SIP User Agent 2" 
48 $SipUA1 setAddress 0 
49 $SipUA2 setAddress 3 
50 $SipUA1 setNodeViaField "SIP/2.0/UDP here.com:5060" 
51 $SipUA2 setNodeViaField "SIP/2.0/UDP there.com:5060" 
52 
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53 # $SipUA1 setAlwaysUseProxyServer true 
54 # $SipUA2 setAlwaysUseProxyServer true 
55 
56 connect -c h0/ua/down@ -and h0/udp/5060@up 
57 connect -c h3/ua/down@ -and h3/udp/5060@up 
58 
59 # Fax port configuration: 
60 
61 connect -c h3/ua/faxPort@down -to h0/t38FaxSender/faxPort@down 
62 connect -c h3/ua/faxPort@down -to h3/t38FaxReceiver/faxPort@down 
63 
64 # For sending a BYE request after fax transfer completes:  
65  connect -c h3/t38FaxReceiver/notify@ -to h3/ua/down@ 
66 
67 #Setting up proxy servers: 
68 set SipPS1 [mkdir mkh.sip.SipPS n4/ps] 
69 set SipPS2 [mkdir mkh.sip.SipPS n5/ps] 
70 $SipPS1 setName "SIP Proxy Server 1" 
71 $SipPS2 setName "SIP Proxy Server 2" 
72 $SipPS1 setAddress 4 
73 $SipPS2 setAddress 5 
74 mkdir drcl.inet.transport.UDP n4/udp 
75 mkdir drcl.inet.transport.UDP n5/udp 
76 connect -c n4/ps/down@ -and n4/udp/5060@up 
77 connect -c n5/ps/down@ -and n5/udp/5060@up 
78  
79 $SipUA1 setConfiguredProxyServerAddress 4 
80 $SipUA2 setConfiguredProxyServerAddress 5 
81 $SipPS1 setOtherNetworkProxyServerAddress 5 
82 $SipPS2 setOtherNetworkProxyServerAddress 4 
83 $SipPS1 setRegisteredNode 0 
84 $SipPS2 setRegisteredNode 3 
85 $SipPS1 setNodeViaField "SIP/2.0/UDP SIP Proxy Server 1:5060" 
86 $SipPS2 setNodeViaField "SIP/2.0/UDP SIP Proxy Server 2:5060" 
87 
88 # Configure the bottleneck bandwidth and buffer size 
89 ! n1 setBandwidth 1 1.0e5; # 100Kbps at interface 1 
90 ! n1 setBufferSize 1 6000; # ~10 packets at interface 1 
91 
92 puts "Setting up static routes..." 
93 java::call drcl.inet.InetUtil setupRoutes [! h0] [! h3] 
"bidirection" 
94 java::call drcl.inet.InetUtil setupRoutes [! h0] [! n4] 
"bidirection" 
95 java::call drcl.inet.InetUtil setupRoutes [! n4] [! n5] 
"bidirection" 
96 java::call drcl.inet.InetUtil setupRoutes [! n5] [! h3] 
"bidirection" 
97 ! h0/tcp setPeer 3 
98 ! h3/tcp setPeer 0 
99 #  Realistically, these should be set from "destination" fields of UAs 
100 puts "Creating The Plotters..." 
101 set plot1 [mkdir drcl.comp.tool.Plotter .plot1] 
102 set file1 [mkdir drcl.comp.io.FileComponent .file1] 
103 $file1 open "SimPlot.plot" 
104 connect -c $plot1/.output@ -to $file1/in@ 
105 
106 attach -c $plot1/0@0 -to h0/tcp/cwnd@ 
107 attach -c $plot1/3@0 -to h3/tcp/cwnd@ 
108 
109 set tm1 [mkdir drcl.net.tool.TrafficMonitor .tm1] 
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110 connect -c h3/csl/6@up -to $tm1/in@ 
111 connect -c $tm1/bytecount@ -to $plot1/3@1 
112 
113 attach -c $plot1/3@2 -to h3/tcp/rcv/seqno@ 
114 attach -c $plot1/0@2 -to h0/tcp/rcv/seqno@ 
115 
116 attach -c h0/counter/in@ -to h0/csl/6@up 
117 attach -c h3/counter/in@ -to h3/csl/6@up 
118 
119 puts "Setting up the NAM trace..." 
120 set nam [java::call drcl.inet.InetUtil setNamTraceOn [! .] \ 
"SimNAMTrace.nam" [_to_string_array "red blue black orange"]] 
121 
122 puts "Building the scenario is finished now, you can proceed with 
running the simulation ..." 

 

Analyses: 

-Line 9: Creating the network element itself to hold the network components. 
-Lines 12-13: Creating and configuring the link element.   
-Line 14: Creating the adjacency matrix; the matrix which defines the 
topology by determining the neighboring nodes of each node. 
-Line 15: Creating the network by calling createTopology() and passing the 
network component, adjacency matrix and link component as arguments. 
-Lines 19-20: Creating a typical node builder and naming it rb. 
-Line 22: Duplicating the rb object and naming it hb for building the hosts 
after further customizing the host builder (hb). 
-Lines 24-25: Creating the transport protocol modules (The UDP module is 
used for signaling and the TCP module is used for the fax data transfer). 
-Line 28: Putting a data packet counter in each of the hosts. 
-Lines 32-37: Creating T.38 sender and receiver modules and putting them 
in the host builder and connecting the modules to the TCP module. 
-Lines 40-41: Building the hosts and routers using the previously configured 
host builder and node builder. 
-Lines 44-51: Creating the SIP user agent modules in the hosts and 
configuring their names, addresses and nodeViaField parameters. 
-Lines 53-54: Setting whether the user agents always have to use the proxy 
servers for signaling or they are allowed to bypass them if they can. 
-Lines 56-57: Configuring the SIP modules to use UDP as transport. 
-Lines 61-65: Setting a mechanism for auto-starting the fax transfer 
immediately after signaling is complete and also auto-starting the signaling 
(the last BYE-OK) after the fax transfer is complete. 
-Lines 68-77: Creating SIP proxy server modules in the nodes and 
configuring their names and addresses. The UDP modules are also setup in 
the nodes and proxy server modules are set to use them for transport. 
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-Lines 79-86: Further customizing the SIP modules: Setting user agents’ 
configured proxy server addresses, making each proxy server know the other 
network’s proxy server, setting each proxy server’s registered node and 
setting the nodeViaField of each proxy server. 
-Lines 89-90: A sample bottleneck is incorporated in the node 1 to examine 
its effect on fax data transfer parameters. 
-Lines 93-98: Setting up the nodes routing table entries and TCP peers. 
-Lines 101-117: Creating the plotters and data counter instruments. Plotters 
monitor fax data throughput, congestion window and received packets 
sequence numbers. The parameters are shown in real-time manner during 
the simulation and since the plots are saved into file, they can be seen and 
examined later as well. 
-Line 120: The nodes are configured to output packets traces in the format 
understandable by Network Animator.  

7.4.3 Scenario Running 

1 puts "" 
2 puts "Starting the Simulation..." 
3 set sim [attach_simulator .] 
4 
5 puts "Fax initiation..." 
6 puts "Negotiating the fax parameters with the other party..." 
7 
8 ########################################## 
9 # Fax Signaling and sending  
10 ########################################## 
11 
12 set message [$SipUA1 constructMessage "INVITE" "SIP/2.0/UDP 
here.com:5060" "sip: user@there.com" "0" 1234@here.com "application/sdp"] 
13 
14 $SipUA1 sendINVITE $message 
15 
16 
17 
18 
19 ########################################## 
20 ## SIP message constructing method syntax: 
21 ## 
22 ## SIPMessage constructMessage(String startLine, String via, String 
to, String from, String ##callID, String contentType) 
23 ########################################## 
24 
25 ########################################## 
26 ## Further SIP message headers customization can be done using this 
syntax: 
27 ## 
28 ## set hd [$message returnSIPHeaders] 
29 ## set SDPhd [$message returnSDPHeaders] 
30 ## puts "SIP header (Call-ID):" 
31 ## $hd getProperty "Call-ID" 
32 ## puts "SDP header (v):" 
33 ## $SDPhd getProperty "v" 
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34 ## $hd setProperty "CSeq" "1" 
35 ########################################## 
36 
37 ########################################## 
38 ## SIP message sending method syntax: 
39 ## 
40 ## sendINVITE(SIPMessage toBeSentMessage) 
41 ########################################## 
42 
43 
44 ### The command for viewing the plots: 
45 ### java drcl.comp.tool.Plotter SimPlot.plot 
 

 

Analyses: 

Line 3: Attaching simulation run-time to the network. 
Line 12: Creating an SIP message in user agent 1 using its 
constructMessage() method according to the syntax given in line 22. 
Line 14: The constructed message is then sent using the sendINVITE() 
method of user agent 1 (The syntax is given in line 40 ). 
Lines 19-45: These are provided to serve as reference and because each line 
is prefixed with a #, it doesn’t get executed. 

7.5 Simulation Results 

7.5.1 The Simulated SIP Call Flow 

Please note that the generation and processing of informational class 
responses have not been simulated. The simulated call flow is depicted in 
Figure 7.2. 

7.5.2 Terminal Output 

As shown in the terminal output following Figure 7.2, after building and 
configuring the network, the simulation starts by user agent 1 sending an 
INVITE request. From there, one can track the call flow from the terminal 
output and also from Figure 7.2. As can be seen, user agents contact each 
other directly after knowing each other’s address from the SIP contact 
header. 

 

 



 132
 
 

 
Figure 7.2  The Simulated SIP Call Flow. 
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Creating topology... 
Creating builders... 
Building Nodes ... 
Setting up static routes... 
Creating The Plotters... 
Setting up the NAM trace... 
Building the scenario is finished now, you can proceed with running the 
simulation ... 
 
Starting the Simulation... 
Fax initiation... 
Negotiating the fax parameters with the other party... 
 
An SIP message is being created ... 
An SDP body is being created ... 
The SIP message is being sent now by SIP User Agent 1 
 
An SIP message has been received and is being processed by SIP Proxy Server 1
The following INVITE request has been received by the request processor... 
 
The message content: 
Start-Line: INVITE 
Request-URI: sip: user@there.com 
Via: SIP/2.0/UDP here.com:5060 
Via 1: Not Set 
Via 2: Not Set 
To: sip: user@there.com 
From: 0 
Call-ID: 1234@here.com 
Subject: A Fax session 
Contact: 0 
Content-Type: application/sdp 
SDP fields:  
SDP Protocol Version Number: RFC 2327 
SDP Protocol Session Information: T.38 fax description 
 
The message is being forwarded to the other network's proxy server now... 
The SIP message is being sent now by SIP Proxy Server 1 
 
An SIP message has been received and is being processed by SIP Proxy Server 2
The following INVITE request has been received by the request processor... 
 
The message content: 
Start-Line: INVITE 
Request-URI: sip: user@there.com 
Via: SIP/2.0/UDP here.com:5060 
Via 1: SIP/2.0/UDP SIP Proxy Server 1:5060 
Via 2: Not Set 
To: sip: user@there.com 
From: 0 
Call-ID: 1234@here.com 
Subject: A Fax session 
Contact: 0 
Content-Type: application/sdp 
SDP fields:  
SDP Protocol Version Number: RFC 2327 
SDP Protocol Session Information: T.38 fax description 
 
The message is being forwarded to the intended node now... 
The SIP message is being sent now by SIP Proxy Server 2 
 
An SIP message has been received and is being processed by SIP User Agent 2 
The following INVITE request has been received by the request processor... 
 
The message content: 
Start-Line: INVITE 
Request-URI: sip: user@there.com 
Via: SIP/2.0/UDP here.com:5060 
Via 1: SIP/2.0/UDP SIP Proxy Server 1:5060 
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Via 2: SIP/2.0/UDP SIP Proxy Server 2:5060 
To: sip: user@there.com 
From: 0 
Call-ID: 1234@here.com 
Subject: A Fax session 
Contact: 0 
Content-Type: application/sdp 
SDP fields:  
SDP Protocol Version Number: RFC 2327 
SDP Protocol Session Information: T.38 fax description 
 
The response of that is being issued... 
An OK message is being sent now by SIP User Agent 2 
 
An SIP message has been received and is being processed by SIP Proxy Server 2
This is a success class response. 
 
The message content: 
Start-Line: 200 
Request-URI:  
Via: SIP/2.0/UDP here.com:5060 
Via 1: SIP/2.0/UDP SIP Proxy Server 1:5060 
Via 2: SIP/2.0/UDP SIP Proxy Server 2:5060 
To: sip: user@there.com 
From: 0 
Call-ID: 1234@here.com 
Subject: A Fax session 
Contact: 3 
Content-Type: application/sdp 
SDP fields:  
SDP Protocol Version Number: RFC 2327 
SDP Protocol Session Information: T.38 fax description 
 
The message is being forwarded to the other network's proxy server now... 
An OK message is being sent now by SIP Proxy Server 2 
 
An SIP message has been received and is being processed by SIP Proxy Server 1
This is a success class response. 
 
The message content: 
Start-Line: 200 
Request-URI:  
Via: SIP/2.0/UDP here.com:5060 
Via 1: SIP/2.0/UDP SIP Proxy Server 1:5060 
Via 2: Removed 
To: sip: user@there.com 
From: 0 
Call-ID: 1234@here.com 
Subject: A Fax session 
Contact: 3 
Content-Type: application/sdp 
SDP fields:  
SDP Protocol Version Number: RFC 2327 
SDP Protocol Session Information: T.38 fax description 
 
The message is being forwarded to the intended node now... 
An OK message is being sent now by SIP Proxy Server 1 
 
An SIP message has been received and is being processed by SIP User Agent 1 
This is a success class response. 
 
The message content: 
Start-Line: 200 
Request-URI:  
Via: SIP/2.0/UDP here.com:5060 
Via 1: Removed 
Via 2: Removed 
To: sip: user@there.com 
From: 0 
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Call-ID: 1234@here.com 
Subject: A Fax session 
Contact: 3 
Content-Type: application/sdp 
SDP fields:  
SDP Protocol Version Number: RFC 2327 
SDP Protocol Session Information: T.38 fax description 
 
An ACK message is being sent now by SIP User Agent 1 
 
An SIP message has been received and is being processed by SIP User Agent 2 
An ACK message has been received... 
 
The message content: 
Start-Line: ACK 
Request-URI: 3 
Via: SIP/2.0/UDP here.com:5060 
Via 1: Not Set 
Via 2: Not Set 
To: 3 
From: 0 
Call-ID: 1234@here.com 
Subject: A Fax session 
Contact: 0 
Content-Type: No Body 
 
Starting the T.38 fax transmission... 
 
 
Fax reception is complete now... 
 
An SIP message is being created ... 
A BYE request is being sent now by SIP User Agent 2 
 
An SIP message has been received and is being processed by SIP User Agent 1 
The following BYE request has been received by the request processor... 
 
The message content: 
Start-Line: BYE 
Request-URI: 0 
Via: SIP/2.0/UDP there.com:5060 
Via 1: Not Set 
Via 2: Not Set 
To: 0 
From: 3 
Call-ID: 1234@here.com 
Subject: A Fax session 
Contact: 3 
Content-Type: No SDP Body 
 
The response of that is being issued... 
An OK message is being sent now by SIP User Agent 1 
 
An SIP message has been received and is being processed by SIP User Agent 2 
This is a success class response. 
 
The message content: 
Start-Line: 200 
Request-URI:  
Via: SIP/2.0/UDP there.com:5060 
Via 1: Not Set 
Via 2: Not Set 
To: 0 
From: 3 
Call-ID: 1234@here.com 
Subject: A Fax session 
Contact: 0 
Content-Type: No SDP Body 
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7.5.3 Packets Traces Analyzed With Network Animator 

The simulation’s packets traces output file is opened using NAM. A time 
instance when fax data is being sent directly from user agent 1 to user agent 
2, bypassing proxy servers, is shown in Figure 7.3. 

 
Figure 7.3  Packets Traces Analyzed With Network Animator. 

7.5.4 Possible Fax Data Transfer Analyses 

Fax data analysis is not a concern of this thesis and the carried out 
simulation. But for depicting the types of possible analyses which can be 
done using J-Sim, as pointed out in the scenario building TCL script lines 
89-90, a bottleneck is incorporated in node 1 and its effect in fax data 
transfer is shown in the following figures:  
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Figure 7.4  Throughput. 

 
Figure 7.5  Received Data Packets Sequence Number. 
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Figure 7.6  Congestion Window. 

Here the discussion regarding simulation scenario building and 
configuration and corresponding analyses comes to an end. In the next 
chapter a summary of all the important points of this thesis including this 
chapter is given. 
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Chapter 8 
Summary & Concluding 
Remarks 
 
 
 
 
 

8.1 Conclusions 

What we intended to do was investigating whether fax parameters details 
could be negotiated using SIP/SDP. In this direction, session establishment, 
starting a typical file transfer, which served as a demonstration of T.38 fax 
transfer, and the subsequent session tear-down, after file transfer was 
complete, were demonstrated in this thesis, through computer simulation. 
Call flow could be tracked and analyzed using the terminal output and also 
the simulation schematic diagram; the former was in complete agreement 
with the claimed results regarding the SIP capabilities.  

Based on the investigated simulation scenario, we showed that SIP 
nicely lends itself to the task. Although only few constant symbolic SDP 
fields were used and hence present in the terminal output, but as mentioned 
before, the simulation results provided a good starting point for the full 
definition and usage of SDP attribute fields to thoroughly specify the T.38 fax 
parameters. This simulation scenario and its results exhibited the potential 
success of the proposed SIP/SDP combination for real-time fax session 
establishment, management and tear-down. 
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Another important analysis carried out in this simulation was 
utilization of SIP contact header for reducing the load on proxy servers which 
is a highly desirable feature. As shown in the terminal output of the 
simulator, after building and configuring the network, the simulation started 
by user agent 1 sending an INVITE request. From there, the call flow could 
be tracked from the terminal output and as could be seen, user agents 
contacted each other directly after knowing each other’s address from the 
SIP contact header.  

8.2 Summary 

In Chapter 2, we introduced and discussed fundamental concepts related to 
this thesis. We first started by inspecting different switching and networking 
modes which paved the way for better understanding the differences between 
the PSTN and the Internet and then moved forward to study PSTN more 
closely. 

In Chapter 3, data networks were investigated. We started by 
discussing some basic issues and then moved forward to talk briefly about 
local/wide area networks. Internet Protocol and transport layer protocols 
were also discussed. 

In Chapter 4, we introduced and discussed the concepts directly 
related to this thesis: Voice/Fax over IP architectures and standards. At first, 
some fundamental issues related to IP telephony were explored. Then, call 
signaling protocols and both real-time and non-real-time fax over IP were 
examined. IP telephony’s QoS were also discussed. Finally, some statistics 
related to current IP telephony market were presented. 

In Chapter 5, the Session Initiation Protocol was treated thoroughly. 
SIP user agents, gateways and the 3 types of servers were discussed. A brief 
introduction of SIP request and response messages and headers was then 
given. Session Description Protocol (SDP), a companion protocol to SIP, was 
treated as well. A comprehensive introduction to SIP programming was also 
given. At the end, SIP and T.38 interactions were explained briefly. 

In Chapter 6, J-Sim, an open-source simulator, was introduced. This 
simulator has been utilized throughout the implementation part of this 
thesis to explore the behavior of the developed protocol and components. To 
start familiarizing the reader with the simulator, salient features of it were 
discussed at first. A quick overview of the inner workings of the simulator 
and how one could develop new modules were given as well. Simulation 
scenario creation, configuration and running were briefly introduced in the 
last section of the chapter.  
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In Chapter 7, we presented the developed modules, studied the 
simulation scenario and presented the accomplished results. First, the 
developed SIP protocol and components were presented. Specifically, some 
extracts of the outputs of the Javadoc software produced from sifting 
through the source codes were presented. A typical simulation scenario was 
analyzed and different stages of scenario construction and running were 
explained. In the last section of the chapter, results of the simulation 
scenario were presented and discussed. 

8.3 Possible Future Works 

Specific T.38 protocol SDP attributes have not been studied in this thesis. As 
a natural next step, if the thorough investigation of real-time fax is 
contemplated, one can refer to this IETF Internet-Draft: “SIP Support for 
Real-time Fax: Call Flow Example And Best Current Practices” [36], which 
can serve as a very good starting point. 

Addition of few more capabilities to the proxy server can be a good 
proposition as well. Additional capabilities can be: handling multiple 
transactions at the same time, stateful operation of the proxy server, having 
location server and multiple registered nodes, implemented either in the 
proxy server code itself or in separate entities, to name a few. 
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Appendix: Source Codes 
 
 
 
 
 
 
 

SIP Message Class 

package mkh.sip; 
 
import java.util.Properties; 
 
/** 
 * This class is a Session Initiation Protocol (SIP) Message. 
 * 
 * @author Masood Khosroshahy ( www.m-kh.info ) 
 * @version 1.0, 14/07/2004 
 */ 
 
public class SIPMessage 
{ 
 /** SIP headers are held in this Properties object. */  
 public Properties headers; 
 /** An SDP message that is contained in the SIP message. */  
 public SDPMessage sdpMessage; 
 /** If set to "application/sdp" an SDP message is created as an 
embedded object. */  
 public String SIPContentType; 
 
 /** Constructor. */ 
 public SIPMessage(String contentType) { 
 
  SIPContentType=contentType; 
  System.out.println("\n"+"An SIP message is being created ..."); 
   
  headers= new Properties(); 
  if (contentType.equals("application/sdp")) 
  { 
   headers.setProperty("Content-Type", "application/sdp");
  
   sdpMessage = new SDPMessage(); 
  } 
  else headers.setProperty("Content-Type", "No SDP Body"); 
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  headers.setProperty("Start-Line", "Not Set"); 
  headers.setProperty("Request-URI", "Not Set"); 
 
// General Headers 
  headers.setProperty("Call-ID", "Not Set"); 
  headers.setProperty("Contact", "Not Set"); 
  headers.setProperty("CSeq", "Not Set"); 
  headers.setProperty("Date", "Not Set"); 
  headers.setProperty("Encryption", "Not Set"); 
  headers.setProperty("From", "Not Set"); 
  headers.setProperty("Organization", "Not Set"); 
  headers.setProperty("Retry-After", "Not Set"); 
  headers.setProperty("Subject", "Not Set"); 
  headers.setProperty("Supported", "Not Set"); 
  headers.setProperty("Timestamp", "Not Set"); 
  headers.setProperty("To", "Not Set"); 
  headers.setProperty("User Agent", "Not Set"); 
  headers.setProperty("Via", "Not Set"); 
  headers.setProperty("Via 1", "Not Set"); 
  headers.setProperty("Via 2", "Not Set"); 
// Request Headers 
  headers.setProperty("Accept", "Not Set"); 
  headers.setProperty("Accept-Contact", "Not Set"); 
  headers.setProperty("Accept-Encoding", "Not Set"); 
  headers.setProperty("Accept-Language", "Not Set"); 
  headers.setProperty("Authorization", "Not Set"); 
  headers.setProperty("Hide", "Not Set"); 
  headers.setProperty("In-Reply-To", "Not Set"); 
  headers.setProperty("Max-Forwards", "Not Set"); 
  headers.setProperty("Priority", "Not Set"); 
  headers.setProperty("Proxy-Authorization", "Not Set"); 
  headers.setProperty("Proxy-Require", "Not Set"); 
  headers.setProperty("Record-Route", "Not Set"); 
  headers.setProperty("Reject-Contact", "Not Set"); 
  headers.setProperty("Request-Disposition", "Not Set"); 
  headers.setProperty("Require", "Not Set"); 
  headers.setProperty("Response-Key", "Not Set"); 
  headers.setProperty("Route", "Not Set"); 
  headers.setProperty("RAck", "Not Set"); 
  headers.setProperty("Session-Expires", "Not Set"); 
// Reponse Headers 
  headers.setProperty("Proxy-Authenticate", "Not Set"); 
  headers.setProperty("Server", "Not Set"); 
  headers.setProperty("Unsupported", "Not Set"); 
  headers.setProperty("Warning", "Not Set"); 
  headers.setProperty("WWW-Authenticate", "Not Set"); 
  headers.setProperty("RSeq", "Not Set"); 
// Entity Headers 
  headers.setProperty("Allow", "Not Set"); 
  headers.setProperty("Content-Encoding", "Not Set"); 
  headers.setProperty("Content-Disposition", "Not Set"); 
  headers.setProperty("Content-Length", "Not Set"); 
  headers.setProperty("Expires", "Not Set"); 
  headers.setProperty("MIME-Version", "Not Set"); 
  } 
 
 /** This is for someone who wants to set other SIP headers as well. ( 
printMessageContent() function in User Agent and Proxy Server should be 
amended accordingly) */ 
 public Properties returnSIPHeaders() 
 { 
  return headers; 
 } 
 
 /** This is for someone who wants to set other SDP headers as well. ( 
printMessageContent() function in User Agent and Proxy Server should be 
amended accordingly) */ 
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 public Properties returnSDPHeaders() 
 { 
  if(SIPContentType.equals("application/sdp")) 
  { 
   return sdpMessage.sdpFields; 
  }else return null; 
 } 
 
} 

SDP Message Class 

package mkh.sip; 
 
import java.util.Properties; 
 
/** 
 * This class is a Session Description Protocol (SDP) Message. 
 * 
 * @author Masood Khosroshahy ( www.m-kh.info ) 
 * @version 1.0, 14/07/2004 
 */ 
 
public class SDPMessage 
{ 
 
 /** SDP headers are held in this Properties object. */  
 protected Properties sdpFields; 
 
 /** Constructor. */ 
 public SDPMessage() {   
 
  System.out.println("An SDP body is being created ..."); 
 
  sdpFields = new Properties(); 
 
  // Protocol Version Number 
  sdpFields.setProperty("v", "RFC 2327"); 
  // Owner/Creator and session identifier 
  sdpFields.setProperty("o", "Not Set"); 
  // Session name 
  sdpFields.setProperty("s", "Not Set"); 
  // Session information 
  sdpFields.setProperty("i", "T.38 fax description"); 
  // Uniform resource indentifier 
  sdpFields.setProperty("u", "Not Set"); 
  // Email address 
  sdpFields.setProperty("e", "Not Set"); 
  // Phone number 
  sdpFields.setProperty("p", "Not Set"); 
  // Connection information 
  sdpFields.setProperty("c", "Not Set"); 
  // Bandwidth information 
  sdpFields.setProperty("b", "Not Set"); 
  // Time session starts and stops 
  sdpFields.setProperty("t", "Not Set"); 
  // Repeat times 
  sdpFields.setProperty("r", "Not Set"); 
  // Time zone corrections 
  sdpFields.setProperty("z", "Not Set"); 
  // Encryption key 
  sdpFields.setProperty("k", "Not Set"); 
  // Attribute lines 
  sdpFields.setProperty("a", "Not Set"); 
  // Media information 
  sdpFields.setProperty("m", "Not Set"); 
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  // Attribute lines (2nd) 
  sdpFields.setProperty("a2", "Not Set"); 
  // Media information (2nd) 
  sdpFields.setProperty("m2", "Not Set"); 
 
  // Attribute lines (3rd) 
  sdpFields.setProperty("a3", "Not Set"); 
  // Media information (3rd) 
  sdpFields.setProperty("m3", "Not Set"); 
 } 
} 
 

SIP User Agent 

package mkh.sip; 
 
import java.util.Properties; 
import drcl.comp.Port; 
import drcl.comp.Contract; 
 
/**  
 * This class is a Session Initiation Protocol User Agent. 
 * 
 * 
 * @author Masood Khosroshahy ( www.m-kh.info ) 
 * @version 1.0, 14/07/2004 
 */ 
 
public class SipUA extends drcl.inet.application.SUDPApplication 
{ 
 
 /** An intermediate variable which is used for processing. */ 
 public SIPMessage receivedMessage; 
 
 /** This is a message which is created by different methods of the 
class. */ 
 public SIPMessage toBeSentMessage; 
 
 /** A variable used for setting the content type of the SIP message, 
typically set to "application/sdp". */ 
 public String contentType; 
 
 /** A vaiable to store the response class from one of six possible 
classes. */ 
 public int responseMessageClass; 
 
 /** An intermediate variable which is used for checking whether a 
message is a request or it is a response and directing it to the related 
processor. */ 
 public String messageType; 
 
 /** Used for storing the other party's address. */ 
 public int destination; 
 
 /** Used for storing the transaction ID so that junk messages can be 
discarded. */ 
 public String transactionID=null; 
 
 /** Node address is set during initialization through the TCL 
interface. */ 
 public int nodeAddress; 
 
 /** Used for determining if the node should respond like 
acknowledging an OK with ACK only if the node is indeed the initiator of 



 146
 
 

the request-response. */ 
 public boolean transactionInitiator=true; 
 
 /** All requests of the node first goes to this address which is set 
during initialization through the TCL interface. */ 
 public int configuredProxyServerAddress; 
 
 /** Used for alerting the T.38 fax module to start sending the fax. 
*/ 
 public Port faxPort; 
 
 /** It is set during initialization through the TCL interface. */ 
 public String nodeViaField; 
 
 /** It is set during initialization through the TCL interface. */ 
 public boolean alwaysUseProxyServer = false; 
 
 /** Constructor. */ 
 public SipUA() 
 { 
  super(); 
  faxPort = addPort ("down","faxPort"); 
 } 
 
 /** Arrived data first gets processed by this method. */ 
 protected void dataArriveAtDownPort(Object data, Port downPort) 
 { 
 /* Internal variable(must be located in this method only): Used for 
alerting the User 
           Agent module to send the BYE request after receiving the 
notification of file 
           transfer completion by the T.38 receiver (ftpd) at its notify@ 
port. */ 
 
  String faxCompletionNotification = "Not Set"; 
 
  try { 
  SIPMessage receivedMessage = (SIPMessage)getContent(data); 
 
  System.out.println("An SIP message has been received and is 
being processed by " 
                                   + getName()); 
 
  messageType = receivedMessage.headers.getProperty("Start-
Line"); 
 
  // Redirecting the request processing: 
  if (messageType.equals("INVITE")) 
   processINVITE(receivedMessage); 
  else if (messageType.equals("ACK")) 
   processACK(receivedMessage); 
  else if (messageType.equals("BYE")) 
   processBYE(receivedMessage); 
 
  // Redirecting the message to the response processor: 
  // If it is an unsupported request message, it will be handled 
there. 
  else processResponse(receivedMessage); 
  }catch (Exception ex) 
  { 
  // Checking to see if the arrived data is a fax completion 
notification issued  
  // by T.38 Receiver (ftpd); ftpd's notify@ port is attached to 
down@ port of UA.  
 
   faxCompletionNotification = (String)data; 
   if (faxCompletionNotification.equals ("done")) 
   { 
    System.out.println("\n" + "Fax reception is 
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complete now..." ); 
    sendBYE(); 
    return; 
   } 
  } 
 } 
 
////////////////////////////////////////////////////////////////// 
// Methods for processing/sending responses : 
////////////////////////////////////////////////////////////////// 
 
 /** This method first checks to see whether the message is a valid 
one then checks to see if it's a response or an unsupported request, after 
that if the message is a response it goes on to handle each type of 
response classes. */ 
 public void processResponse(SIPMessage receivedMessage)  
 { 
  // transactionID must have been set when sending a request. 
  if (! transactionID.equals( 
receivedMessage.headers.getProperty("Call-ID"))) 
  {  
  System.out.println("This transaction does not exist." ); 
  return; 
  } 
  try{ 
  responseMessageClass =Integer.parseInt( 
receivedMessage.headers.getProperty("Start-Line")); 
  }catch(Exception ex) { 
  System.out.println("The message headers have not been properly 
set or" + 
                                   " this type of SIP request is not 
supported."+"\n" ); 
  printMessageContent(receivedMessage); 
  return; 
  } 
  // Detemining the response class ... 
  if ( (responseMessageClass >= 100) && (responseMessageClass < 
200)) 
   System.out.println("This is an informational class 
response." ); 
 
  else if (responseMessageClass == 200) 
  { 
  System.out.println("This is a success class response." ); 
  destination = 
Integer.parseInt(receivedMessage.headers.getProperty("Contact")); 
  printMessageContent(receivedMessage); 
 
  // If this node is the initiator of request-response then it 
sends an ACK 
  if (transactionInitiator) sendACK(receivedMessage); 
 
  } 
  else if ( (responseMessageClass >= 300) && 
(responseMessageClass < 400)) 
   System.out.println("This is a redirection class 
response." ); 
 
  else if ( (responseMessageClass >= 400) && 
(responseMessageClass < 500)) 
   System.out.println("This is a client error class 
response." ); 
 
  else if ( (responseMessageClass >= 500) && 
(responseMessageClass < 600)) 
   System.out.println("This is a server error class 
response." ); 
 
  else if ( (responseMessageClass >= 600) && 
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(responseMessageClass < 700)) 
   System.out.println("This is a global error class 
response." ); 
 
  else  
  { 
   System.out.println("The message headers have not been 
properly." ); 
   printMessageContent(receivedMessage); 
  } 
 } 
 
 public void sendOK(SIPMessage receivedMessage) 
 { 
  int address; 
  toBeSentMessage=receivedMessage; 
  toBeSentMessage.headers.setProperty("Start-Line", "200"); 
  toBeSentMessage.headers.setProperty("Contact", 
String.valueOf(nodeAddress)); 
  toBeSentMessage.headers.setProperty("Request-URI", ""); 
 
  if (! transactionInitiator)  address = 
configuredProxyServerAddress; 
  else address = destination; 
 
  if (alwaysUseProxyServer)  address= 
configuredProxyServerAddress; 
 
  sendmsg(toBeSentMessage, 10/*size*/, address, 5060); 
  System.out.println("An OK message is being sent now by "+ 
getName() +"\n" ); 
 } 
////////////////////////////////////////////////////////////////// 
// Methods for processing/sending requests : 
////////////////////////////////////////////////////////////////// 
 
 public void processINVITE(SIPMessage receivedMessage)  
 { 
  System.out.println("The following INVITE request has been 
received by the" 
                                   +" request processor..."); 
  printMessageContent(receivedMessage); 
 
  // transactionID is saved to identify this session in later 
messages. 
  transactionID = receivedMessage.headers.getProperty("Call-ID"); 
 
  System.out.println("\n" + "The response of that is being 
issued..."); 
 
  // destination is saved to use for directly sending messages to 
the other party. 
  destination =Integer.parseInt( 
receivedMessage.headers.getProperty("From")); 
 
  // The other party is the initiator, hence the value given. 
  transactionInitiator=false; 
 
  sendOK(receivedMessage); 
 } 
 
 public void sendINVITE(SIPMessage toBeSentMessage) 
 { 
  transactionID = toBeSentMessage.headers.getProperty("Call-ID"); 
 
  toBeSentMessage.headers.setProperty("Contact", 
toBeSentMessage.headers.getProperty("From")); 
  toBeSentMessage.headers.setProperty("Request-URI", 
toBeSentMessage.headers.getProperty("To")); 
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  sendmsg(toBeSentMessage, 10/*size*/, 
configuredProxyServerAddress, 5060); 
  System.out.println("The SIP message is being sent now by "+ 
getName() +"\n" ); 
 } 
 
 public void processACK(SIPMessage receivedMessage)  
 { 
  System.out.println("An ACK message has been received..."); 
  printMessageContent(receivedMessage);   
 
  /* If this node is not the initiator of request-response then 
receiving  
   this ACK means that now it's the time for alerting the other 
party to  
                 send the fax by faxPort which is connected to sender's 
T.38 Sender  
                 module. Not a nice implementation, but the only way I 
could make the  
                 fax start automatically. There is an implementation of 
user agent  
                 which sends fax and BYE request by scheduling them in TCL 
as well.*/ 
 
  if (! transactionInitiator)  
  { 
   faxPort.doSending ("Ready"); 
  } 
 } 
 
 public void sendACK(SIPMessage receivedMessage) 
 { 
  int address; 
  toBeSentMessage = receivedMessage; 
  toBeSentMessage.headers.setProperty("Start-Line","ACK"); 
  toBeSentMessage.headers.setProperty("Content-Type","No Body" ); 
  toBeSentMessage.headers.setProperty("Contact", 
String.valueOf(nodeAddress)); 
  toBeSentMessage.headers.setProperty("To", 
String.valueOf(destination)); 
  toBeSentMessage.headers.setProperty("Request-URI", 
receivedMessage.headers.getProperty("To")); 
  toBeSentMessage.headers.setProperty("Via 1","Not Set"); 
  toBeSentMessage.headers.setProperty("Via 2","Not Set"); 
 
  if (alwaysUseProxyServer)  address= 
configuredProxyServerAddress; 
  else address= destination; 
 
  sendmsg(toBeSentMessage, 10/*size*/, address, 5060); 
  System.out.println("\n"+"An ACK message is being sent now by "+ 
getName() +"\n" ); 
 
 } 
 
 public void processBYE(SIPMessage receivedMessage)  
 { 
  System.out.println("The following BYE request has been received 
by the request"+ 
                                   " processor..."); 
  printMessageContent(receivedMessage); 
 
  if (transactionID.equals( 
receivedMessage.headers.getProperty("Call-ID"))) 
  { 
 
  System.out.println("\n" + "The response of that is being 
issued..."); 
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  destination =Integer.parseInt( 
receivedMessage.headers.getProperty("From")); 
 
  sendOK(receivedMessage); 
  }else System.out.println("A request for terminating a non-
existent connection "+ 
                                          "has been received !..."); 
 } 
 
 public void sendBYE() 
 { 
  int address; 
  SIPMessage toBeSentMessage = constructMessage("BYE", 
nodeViaField, String.valueOf(destination), String.valueOf(nodeAddress), 
transactionID, "No Body" ) ; 
 
  toBeSentMessage.headers.setProperty("Contact", 
String.valueOf(nodeAddress)); 
  toBeSentMessage.headers.setProperty("Request-URI", 
String.valueOf(destination)); 
 
  if (alwaysUseProxyServer)  address= 
configuredProxyServerAddress; 
  else address= destination; 
 
  sendmsg(toBeSentMessage, 10/*size*/, address, 5060); 
  System.out.println("A BYE request is being sent now by "+ 
getName() +"\n" ); 
 
 } 
 
////////////////////////////////////////////////////////////////// 
// Other utility methods : 
////////////////////////////////////////////////////////////////// 
 
 public SIPMessage constructMessage(String startLine, String via, 
String to, String from, String callID, String contentType) 
 { 
  SIPMessage toBeSentMessage= new SIPMessage(contentType); 
 
  toBeSentMessage.headers.setProperty("Start-Line", startLine); 
  toBeSentMessage.headers.setProperty("Via", via); 
  toBeSentMessage.headers.setProperty("To", to); 
  toBeSentMessage.headers.setProperty("From", from); 
  toBeSentMessage.headers.setProperty("Call-ID", callID); 
  toBeSentMessage.headers.setProperty("Subject", "A Fax 
session"); 
 
  return toBeSentMessage; 
 } 
 
 public void printMessageContent(SIPMessage message) 
 { 
  System.out.println("\n" + "The message content:"); 
  System.out.println("Start-Line: " 
                                   +message.headers.getProperty("Start-
Line")); 
  System.out.println("Request-URI: " 
                                   +message.headers.getProperty("Request-
URI")); 
  System.out.println("Via: " 
                                   +message.headers.getProperty("Via")); 
  System.out.println("Via 1: " 
                                   +message.headers.getProperty("Via 1")); 
  System.out.println("Via 2: " 
                                   +message.headers.getProperty("Via 2")); 
  System.out.println("To: " 
                                   +message.headers.getProperty("To")); 
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  System.out.println("From: " 
                                   +message.headers.getProperty("From")); 
  System.out.println("Call-ID: " 
                                   +message.headers.getProperty("Call-
ID")); 
  System.out.println("Subject: " 
                                   
+message.headers.getProperty("Subject")); 
  System.out.println("Contact: " 
                                   
+message.headers.getProperty("Contact")); 
  System.out.println("Content-Type: " 
                                   +message.headers.getProperty("Content-
Type")); 
 
  contentType = message.headers.getProperty("Content-Type"); 
 
  if (contentType.equals("application/sdp")) 
  { 
   System.out.println("SDP fields: "); 
   System.out.println("SDP Protocol Version Number: "+ 
                      
message.sdpMessage.sdpFields.getProperty("v")); 
   System.out.println("SDP Protocol Session Information: " 
                                            + 
message.sdpMessage.sdpFields.getProperty("i")); 
  } 
 } 
 
 public void setAddress(int address) 
 { 
  nodeAddress = address; 
 
 } 
 
 public void setConfiguredProxyServerAddress(int address) 
 { 
  configuredProxyServerAddress=address; 
 } 
 
 public void setNodeViaField(String s) 
 { 
  nodeViaField = s; 
 
 } 
 
 public void setAlwaysUseProxyServer (boolean x) 
 { 
  alwaysUseProxyServer =x ; 
 } 
////////////////////////////////////////////////////////////////// 
// Other module methods : 
////////////////////////////////////////////////////////////////// 
 
 public void reset() 
 { 
  super.reset(); // Let super class reset its fields. 
 } 
 
 public void duplicate(Object source) 
 { 
  super.duplicate(source); 
 } 
 
 public String info() 
 { 
  return getName(); 
 } 
} 
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SIP Proxy Server 

package mkh.sip; 
 
import java.util.Properties; 
import drcl.comp.Port; 
import drcl.comp.Contract; 
 
/**  
 * This class is an SIP Proxy Server. 
 * 
 * 
 * @author Masood Khosroshahy ( www.m-kh.info ) 
 * @version 1.0, 14/07/2004 
 */ 
 
public class SipPS extends drcl.inet.application.SUDPApplication 
{ 
 
 /** An intermediate variable which is used for processing. */ 
 public SIPMessage receivedMessage; 
 
 /** This is a message which is created by different methods of the 
class. */ 
 public SIPMessage toBeSentMessage; 
 
 /** A variable used for setting the content type of the SIP message, 
typically set to "application/sdp". */ 
 public String contentType; 
 
 /** A vaiable to store the response class from one of six possible 
classes. */ 
 public int responseMessageClass; 
 
 /** An intermediate variable which is used for checking whether a 
message is a request or it is a response and directing it to the related 
processor. */ 
 public String messageType; 
 
 /** Used for storing the transaction ID so that junk messages can be 
discarded. */ 
 public String transactionID=null; 
 
 /** Node address is set during initialization through the TCL 
interface. */ 
 public int nodeAddress; 
 
 /** All requests of the set node first goes to this proxy server and 
it is set during initialization through the TCL interface. */ 
 public int registeredNode; 
 
 /** It is set during initialization through the TCL interface. */ 
 public String nodeViaField; 
 
 /** It is set during initialization through the TCL interface. */ 
 public int  otherNetworkProxyServerAddress; 
 
 /** Constructor. */ 
 public SipPS() 
 { 
  super(); 
 } 
 
 /** Arrived data first gets processed by this method. The proxy 
server in this version only can accept/direct SIP packets. Fax data itself 
should be directed using other routers.*/ 
 protected void dataArriveAtDownPort(Object data, Port downPort) 
 { 
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  SIPMessage receivedMessage = (SIPMessage)getContent(data); 
 
  System.out.println("An SIP message has been received and is 
being processed by "+ getName()); 
 
  messageType = receivedMessage.headers.getProperty("Start-
Line"); 
 
  // Redirecting the request processing: 
  if (messageType.equals("INVITE")) 
   processINVITE(receivedMessage); 
  else if (messageType.equals("ACK")) 
   processACK(receivedMessage); 
  else if (messageType.equals("BYE")) 
   processBYE(receivedMessage); 
 
  // Redirecting the message to the response processor: 
  // If it is an unsupported request message, it will be handled 
there. 
  else processResponse(receivedMessage); 
 } 
 
////////////////////////////////////////////////////////////////// 
// Methods for processing/sending responses : 
////////////////////////////////////////////////////////////////// 
 
 /** This method first checks to see whether the message is a valid 
one then checks to see if it's a response or an unsupported request, after 
that if the message is a response it goes on to handle each type of 
response classes. */ 
 public void processResponse(SIPMessage receivedMessage)  
 { 
 // transactionID must have been set when receiving the first INVITE 
request. 
 if (! transactionID.equals( 
receivedMessage.headers.getProperty("Call-ID"))) 
 {  
 System.out.println("This transaction does not exist." ); 
 return; 
 } 
 try{ 
 responseMessageClass =Integer.parseInt( 
receivedMessage.headers.getProperty("Start-Line")); 
 }catch(Exception ex) { 
 System.out.println("The message headers have not been properly set 
or" + 
                                  " this type of SIP request is not 
supported."+"\n" ); 
 printMessageContent(receivedMessage); 
 return; 
 } 
 // Determining the response class ... 
 if ( (responseMessageClass >= 100) && (responseMessageClass < 200)) 
  System.out.println("This is an informational class response." 
); 
 
 else if ( (responseMessageClass >= 300) && (responseMessageClass < 
400)) 
  System.out.println("This is a redirection class response." ); 
 
 else if ( (responseMessageClass >= 400) && (responseMessageClass < 
500)) 
  System.out.println("This is a client error class response." ); 
 
 else if ( (responseMessageClass >= 500) && (responseMessageClass < 
600)) 
  System.out.println("This is a server error class response." ); 
 
 else if ( (responseMessageClass >= 600) && (responseMessageClass < 
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700)) 
  System.out.println("This is a global error class response." ); 
 
 else if (responseMessageClass == 200) 
 { 
  System.out.println("This is a success class response." ); 
  printMessageContent(receivedMessage); 
 
  // If the message is received from a registered user agent, it 
is forwarded to  
  // the other network's proxy server 
 
 if(Integer.parseInt(receivedMessage.headers.getProperty("Contact"))== 
registeredNode) 
  { 
   System.out.println("\n" + "The message is being forwarded 
to the other"+ 
                                           " network's proxy server 
now..."); 
 
  // Proxy server removes its Via header from the message.  
  if 
(nodeViaField.equals(receivedMessage.headers.getProperty("Via 1")) ) 
    receivedMessage.headers.setProperty("Via 1","Removed"); 
  else if 
(nodeViaField.equals(receivedMessage.headers.getProperty("Via 2"))) 
   receivedMessage.headers.setProperty("Via 2","Removed"); 
    
   // The message is configured and sent  
   sendOK(receivedMessage, otherNetworkProxyServerAddress); 
  }else{ 
  // If the message is received from a non-registered user agent, 
it is forwarded 
                // to the intended registered node. 
 
   System.out.println("\n" + "The message is being forwarded 
to the"+ 
                                           " intended node now..."); 
 
  if 
(nodeViaField.equals(receivedMessage.headers.getProperty("Via 1")) ) 
    receivedMessage.headers.setProperty("Via 1","Removed"); 
  else if 
(nodeViaField.equals(receivedMessage.headers.getProperty("Via 2"))) 
   receivedMessage.headers.setProperty("Via 2","Removed"); 
 
   sendOK(receivedMessage, registeredNode); 
  } 
 } 
 
 else System.out.println("The message headers have not been properly." 
); 
 
 } 
 
 public void sendOK(SIPMessage receivedMessage, int address) 
 { 
  toBeSentMessage = receivedMessage; 
  toBeSentMessage.headers.setProperty("Start-Line", "200"); 
  sendmsg(toBeSentMessage, 10/*size*/, address, 5060); 
  System.out.println("An OK message is being sent now by "+ 
getName() +"\n" ); 
 } 
////////////////////////////////////////////////////////////////// 
// Methods for processing/sending requests : 
////////////////////////////////////////////////////////////////// 
 
 public void processINVITE(SIPMessage receivedMessage)  
 { 
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  System.out.println("The following INVITE request has been 
received by the " 
                                   + "request processor..."); 
 
  printMessageContent(receivedMessage); 
 
  // transactionID is saved to identify this session in later 
messages. 
  transactionID = receivedMessage.headers.getProperty("Call-ID"); 
 
  // If the message is received from a registered user agent, it 
is forwarded to  
  // the other network's proxy server 
 
 if(Integer.parseInt(receivedMessage.headers.getProperty("Contact"))== 
registeredNode) 
  { 
   System.out.println("\n" + "The message is being forwarded 
to the other"+ 
                                           " network's proxy server 
now..."); 
    
   receivedMessage.headers.setProperty("Via 1", 
nodeViaField); 
   sendINVITE(receivedMessage, 
otherNetworkProxyServerAddress); 
  }else{ 
  // If the message is received from a non-registered user agent, 
it is forwarded 
                // to the intended registered node. 
   System.out.println("\n" + "The message is being forwarded 
to the"+ 
                                           " intended node now..."); 
 
   receivedMessage.headers.setProperty("Via 2", 
nodeViaField); 
   sendINVITE(receivedMessage, registeredNode); 
  } 
 } 
 
 public void sendINVITE(SIPMessage toBeSentMessage, int nextHop) 
 { 
  // The following three statements are necessary only when a 
proxy server 
                // initiates a transaction. 
 
 /*  
  transactionID = toBeSentMessage.headers.getProperty("Call-ID"); 
 
  toBeSentMessage.headers.setProperty("Contact", 
toBeSentMessage.headers.getProperty("From")); 
  toBeSentMessage.headers.setProperty("Request-URI", 
toBeSentMessage.headers.getProperty("To")); 
 
 */ 
  sendmsg(toBeSentMessage, 10/*size*/, nextHop, 5060); 
  System.out.println("The SIP message is being sent now by "+ 
getName() +"\n" ); 
 } 
 
 
 public void processACK(SIPMessage receivedMessage)  
 { 
 
 if (transactionID.equals( receivedMessage.headers.getProperty("Call-
ID"))) 
 { 
  System.out.println("An ACK message has been received..."); 
  printMessageContent(receivedMessage); 
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  // If the message is received from a registered user agent, it 
is forwarded to  
  // the other network's proxy server 
 
 if(Integer.parseInt(receivedMessage.headers.getProperty("Contact"))== 
registeredNode) 
  { 
   System.out.println("\n" + "The message is being forwarded 
to the other"+ 
                                           " network's proxy server 
now..."); 
    
   receivedMessage.headers.setProperty("Via 1", 
nodeViaField); 
   sendACK(receivedMessage, otherNetworkProxyServerAddress); 
  }else{ 
  // If the message is received from a non-registered user agent, 
it is forwarded 
                // to the intended registered node. 
   System.out.println("\n" + "The message is being forwarded 
to the"+ 
                                           " intended node now..."); 
 
   receivedMessage.headers.setProperty("Via 2", 
nodeViaField); 
   sendACK(receivedMessage, registeredNode); 
  } 
 }else System.out.println("An ACK request for a non-existent 
connection "+ 
                                          "has been received !..."); 
 } 
 
 public void sendACK(SIPMessage receivedMessage, int nextHop) 
 { 
  toBeSentMessage = receivedMessage; 
  toBeSentMessage.headers.setProperty("Start-Line", "ACK"); 
  toBeSentMessage.headers.setProperty("Content-Type", "No Body"); 
 
  sendmsg(toBeSentMessage, 10/*size*/, nextHop, 5060); 
  System.out.println("An ACK message is being sent now by "+ 
getName() +"\n" ); 
 
 } 
 
 public void processBYE(SIPMessage receivedMessage)  
 { 
 if (transactionID.equals( receivedMessage.headers.getProperty("Call-
ID"))) 
 { 
  System.out.println("The following BYE request has been received 
by the request"+ 
                            " processor..."); 
  printMessageContent(receivedMessage); 
 
  // If the message is received from a registered user agent, it 
is forwarded to  
  // the other network's proxy server 
 
 if(Integer.parseInt(receivedMessage.headers.getProperty("Contact"))== 
registeredNode) 
  { 
   System.out.println("\n" + "The message is being forwarded 
to the other"+ 
                                           " network's proxy server 
now..."); 
    
   receivedMessage.headers.setProperty("Via 1", 
nodeViaField); 
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   sendBYE(receivedMessage, otherNetworkProxyServerAddress); 
  }else{ 
  // If the message is received from a non-registered user agent, 
it is forwarded 
                // to the intended registered node. 
   System.out.println("\n" + "The message is being forwarded 
to the"+ 
                                           " intended node now..."); 
 
   receivedMessage.headers.setProperty("Via 2", 
nodeViaField); 
   sendBYE(receivedMessage, registeredNode); 
  } 
 }else System.out.println("A request for terminating a non-existent 
connection "+ 
                                          "has been received !..."); 
 } 
 
 public void sendBYE(SIPMessage toBeSentMessage, int nextHop) 
 { 
  sendmsg(toBeSentMessage, 10/*size*/, nextHop, 5060); 
  System.out.println("The SIP message is being sent now by "+ 
getName() +"\n" ); 
 } 
 
////////////////////////////////////////////////////////////////// 
// Other utility methods : 
////////////////////////////////////////////////////////////////// 
 
  // The following function is necessary only when a proxy server 
                // initiates a transaction. 
 
 public SIPMessage constructMessage(String startLine, String via, 
String to, String from, String callID, String contentType) 
 { 
  SIPMessage toBeSentMessage= new SIPMessage(contentType); 
 
  toBeSentMessage.headers.setProperty("Start-Line", startLine); 
  toBeSentMessage.headers.setProperty("Via", via); 
  toBeSentMessage.headers.setProperty("To", to); 
  toBeSentMessage.headers.setProperty("From", from); 
  toBeSentMessage.headers.setProperty("Call-ID", callID); 
  toBeSentMessage.headers.setProperty("Subject", "A Fax 
session"); 
 
  return toBeSentMessage; 
 } 
 
 public void printMessageContent(SIPMessage message) 
 { 
  System.out.println("\n" + "The message content:"); 
  System.out.println("Start-Line: " 
                                   +message.headers.getProperty("Start-
Line")); 
  System.out.println("Request-URI: " 
                                   +message.headers.getProperty("Request-
URI")); 
  System.out.println("Via: " 
                                   +message.headers.getProperty("Via")); 
  System.out.println("Via 1: " 
                                   +message.headers.getProperty("Via 1")); 
  System.out.println("Via 2: " 
                                   +message.headers.getProperty("Via 2")); 
  System.out.println("To: " 
                                   +message.headers.getProperty("To")); 
  System.out.println("From: " 
                                   +message.headers.getProperty("From")); 
  System.out.println("Call-ID: " 
                                   +message.headers.getProperty("Call-
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ID")); 
  System.out.println("Subject: " 
                                   
+message.headers.getProperty("Subject")); 
  System.out.println("Contact: " 
                                   
+message.headers.getProperty("Contact")); 
  System.out.println("Content-Type: " 
                                   +message.headers.getProperty("Content-
Type")); 
 
  contentType = message.headers.getProperty("Content-Type"); 
 
  if (contentType.equals("application/sdp")) 
  { 
   System.out.println("SDP fields: "); 
   System.out.println("SDP Protocol Version Number: "+ 
                      
message.sdpMessage.sdpFields.getProperty("v")); 
   System.out.println("SDP Protocol Session Information: " 
                                            + 
message.sdpMessage.sdpFields.getProperty("i")); 
  } 
 } 
 public void setAddress(int address) 
 { 
  nodeAddress = address; 
 
 } 
 
 
 public void setOtherNetworkProxyServerAddress(int address) 
 { 
  otherNetworkProxyServerAddress=address; 
 } 
 
 public void setRegisteredNode(int address) 
 { 
  registeredNode = address; 
 } 
 
 public void setNodeViaField(String s) 
 { 
  nodeViaField = s; 
 
 } 
 
 
////////////////////////////////////////////////////////////////// 
// Other module methods : 
////////////////////////////////////////////////////////////////// 
 
 public void reset() 
 { 
  super.reset(); // Let super class reset its fields. 
 } 
 
 public void duplicate(Object source) 
 { 
  super.duplicate(source); 
 } 
 
 public String info() 
 { 
  return getName(); 
 } 
} 
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T.38 Sender 

package mkh.sip; 
 
import drcl.comp.Port; 
import java.io.*; 
import drcl.comp.lib.bytestream.ByteStreamContract; 
 
/**  
 * This class is a T.38 Sender (Basically an FTP Server). "helper" in 
SApplication.java Line 
 * 59 must be declared public and the file gets recompiled and stored in 
the class folder if one 
 * wants to compile the T38Sender.java 
 * 
 * 
 * @author Masood Khosroshahy ( www.m-kh.info ) 
 * @version 1.0, 14/07/2004 
 */ 
 
public class T38Sender extends drcl.inet.application.ftp 
{ 
 
 public Port faxPort; 
 
 /** Constructor. faxPort is initialized for listening to "Ready" 
notifications. To-be-sent fax (file) name is also set to "ToBeSentFax.JPG" 
(The to-be-sent fax has to have exactly this name and extention, otherwise 
the code has to be recompiled using the preferred names).*/ 
 public T38Sender() throws IOException 
 { 
  super(); 
  faxPort = addPort ("down","faxPort"); 
  super.setup("ToBeSentFax.JPG" , 32768); 
 } 
 
 
 /** The process() method of drcl.inet.application.SApplication has 
been overridden. 
  and "data" is first examined to see if it is a fax start 
notification from the user agent module and then if it's not, it is 
directed to the "helper" variable of SApplication.*/ 
 public void process(Object data, drcl.comp.Port inPort) 
 { 
  if (inPort.getID().equals("faxPort")) 
  { 
   String faxReadyNotification = (String) data; 
   if (faxReadyNotification.equals("Ready")) 
   super._start(); 
   System.out.println("\n"+"Starting the T.38 fax 
transmission..." +"\n" ); 
  }else 
  { 
   // "helper" in SApplication.java Line 59 must be declared 
public and the 
                        // file gets recompiled and stored in class folder 
 
   helper.handle((ByteStreamContract.Message)data); 
  } 
 
 } 
 
////////////////////////////////////////////////////////////////// 
// Other module methods : 
////////////////////////////////////////////////////////////////// 
 
 public void reset() 
 { 
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  super.reset(); // Let super class reset its fields. 
 } 
 
 public void duplicate(Object source) 
 { 
  super.duplicate(source); 
 } 
 
 public String info() 
 { 
  return "T.38 Sender Class."; 
 } 
} 

T.38 Receiver 

package mkh.sip; 
 
import drcl.comp.Port; 
import java.io.*; 
import drcl.comp.lib.bytestream.ByteStreamContract; 
 
/**  
 * This class is a T.38 Receiver (Basically an FTP Client). "helper" in 
SApplication.java Line 
 * 59 must be declared public and the file gets recompiled and stored in 
the class folder if one 
 * wants to compile the T38Receiver.java 
 * 
 * 
 * @author Masood Khosroshahy ( www.m-kh.info ) 
 * @version 1.0, 14/07/2004 
 */ 
 
public class T38Receiver extends drcl.inet.application.ftpd 
{ 
 
 public Port faxPort; 
 
 /** Constructor. faxPort is initialized for listening to "Ready" 
notifications. Received fax (file) name is also set.*/ 
 public T38Receiver() throws IOException 
 { 
  super(); 
  faxPort = addPort ("down","faxPort"); 
  super.setup("ReceivedFax.jpg", 32768); 
 } 
 
 /** The process() method of drcl.inet.application.SApplication has 
been overridden. 
  and "data" is first examined to see if it is a fax start 
notification from the user agent module and then if it's not, it is 
directed to the "helper" variable of SApplication.*/ 
 
 public void process(Object data, drcl.comp.Port inPort) 
 { 
  if (inPort.getID().equals("faxPort")) 
  { 
   String faxReadyNotification = (String) data; 
   if (faxReadyNotification.equals("Ready")) 
   super._start(); 
  }else 
  { 
   // "helper" in SApplication.java Line 59 must be declared 
public and the 
                        // file gets recompiled and stored in class folder 
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   helper.handle((ByteStreamContract.Message)data); 
  } 
 } 
 
////////////////////////////////////////////////////////////////// 
// Other module methods : 
////////////////////////////////////////////////////////////////// 
 
 public void reset() 
 { 
  super.reset(); // Let super class reset its fields. 
 } 
 
 public void duplicate(Object source) 
 { 
  super.duplicate(source); 
 } 
 
 public String info() 
 { 
  return "T.38 Sender Class."; 
 } 
} 
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